• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 8, p. 679-684
https://doi.org/10.15407/ujpe62.08.0679    Paper

Franiv A.V., Kashuba A.I.,Bovgyra O.V., Futey O.V.

Ivan Franko National University of Lviv
(8, Kyrylo i Mefodii Str., Lviv 79005, Ukraine; e-mail: AndriyKashuba07@gmail.com)

Elastic Properties of Substitutional Solid Solutions InxTl1-xI and Sound Wave Velocities in Them

Section: Solid Matter
Original Author's Text: Ukrainian/English

Abstract: Elastic properties of substitutional solid solutions InxTl1-xI have been studied. The corresponding Young modulus, shear modulus, and compression modulus are calculated theoretically. The
dependence of the elastic properties of the InxTl1-xI solid solution on the content within the
interval 0.375 ≤ x ≤ 1 is analyzed. The velocity of sound propagation in examined specimens
is studied experimentally. The obtained data are used to calculate the elastic coefcient C22 for
InxTl1-xI. The theoretical results are found to be in good agreement with experimental data.

Key words: substitutional solid solutions, elastic constants, piezoelectric transducer, ultrasonic waves.


  1. A. Franiv, O. Bovgyra, O. Savchyn. Electron and phonon spectra of In Tl1− I substitutional solid solutions. Ukr. J. Phys. 51, 269 (2006).
  2. Ya.O. Dovhyi, S.V. Ternavska, A.V. Franiv, O.V. Bovgyra, O.V. Savchyn. Raman spectra of In xTl1− I substitutional solid solutions. Funct. Mater. 12, 503 (2005).
  3. Xu Zhao-Peng, Wang Yong-Zhen, Zhang Wei, Wang Qian, Wu Guo-Qing. First-principle study on the effects of Tl doping on the band gap and the band-edge of optical absorption of InI. Acta Phys. Sin. 63, 147102 (2014).
  4. A.I. Kashuba, S.V. Apunevych. Phonon spectrum of crystals of substitutional solid solutions In Tl1− I. Zh. Nano Elektron. Fiz. 8, 01010 (2016) (in Ukrainian).
  5. A. Kashuba. Concentration dependence of the energy gap width in substitutional solid solutions In Tl1− I. Visn L'viv. Univ. Ser. Fiz. No. 50, 3 (2015) (in Ukrainian).
  6. A.I. Kashuba, O.V. Bovgyra, A.V. Franiv, S.V. Apunevych. Argand diagrams and oscillator forces of the In0.5Tl0.5I crystal. Fiz. Khim. Tverd. Tila 17, 350 (2016) (in Ukrainian).
  7. M.I. Kolinko, O.V. Bovgyra. Band energy diagram of indium bromide. Ukr. J. Phys. 46, 707 (2001).
  8. A. Bellouche, A. Gueddim, S. Zerroug, N. Bouarissa. Elastic properties and optical spectra of ZnS1− O dilute semiconductor alloys. Optik 127, 11374 (2016).
  9. Y. Abed, F. Montaghni. Simulation investigations of structural, electronic, optical and elastic properties of the Cu Ti1− O2. Nanosci. Nanotechnol. 6, No. 4, 62 (2016).
  10. R.M. Martin. Elastic properties of ZnS structure semiconductors. Phys. Rev. B 1, 4005 (1970).
  11. F. Kalarasse, B. Bennecer. Structural and elastic properties of the filled tetrahedral semiconductors LiZnX (X = N, P, and As). J. Phys. Chem. Solids 67, 846 (2006).
  12. P. Hohenberg. Inhomogeneous electron gas. Phys. Rev. 136, 864 (1964).
  13. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
  14. I.V. Semkiv, B.A. Lukiyanets, H.A. Ilchuk, R.Yu. Petrus, A.I. Kashuba, M.V. Chekaylo. Energy structure of ′ -phase of Ag8SnSe6 crystal. J. Nano-Electron. Phys. 8, 01011 (2016).
  15. O.G. Vlokh, O.M. Mokryi, A.V. Kityk. Device for measuring ultrasound velocity in solid and liquid media. Author sertificate No. 1608432 USSR (1990).
  16. E.P. Papadakis. Ultrasonic phase velocity by the pulseecho-overlap method incorporating diffraction phase corrections. J. Acoust. Soc. Am. 42, 1045 (1967).
  17. Handbook Series on Semiconductor Parameters. Edited by M. Levinshtein, S. Rumyantsev, M. Shur (World Scientific, 1999), Vol. 2.
  18. N. Bouarissa, S. Saib. Elastic modulus, optical phonon modes and polaron properties in Al1− B N alloys. Curr. Appl. Phys. 13, 493 (2013).
  19. S.I. Mudryi. Acoustic Methods of Substance Analysis (Lviv Nat. Univ. Publ. Center, 2008) (in Ukrainian).
  20. Y. Honma, M. Yamada, K. Yamamoto. Elastic constants of GaS and GaSe layered crystals determined by Brillouin scattering. J. Phys. Soc. Jpn. 52, 2777 (1983).
  21. P. Ravindran, L. Fast, P. A. Korzhavyi et al. Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. J. Appl. Phys. 84, 4891 (1998).