• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 8, p. 666-671
https://doi.org/10.15407/ujpe62.08.0666    Paper

Staschuk V.S.1, Kravets V.G.1, Lysiuk V.O.2, Polyanska O.P.1, Stukalenko V.V.1, Yampolsky A.L.1

1 Taras Shevchenko National University of Kyiv, Faculty of Physics
(4, Academician Glushkov Ave., Kyiv 03022, Ukraine; e-mail: svs@univ.kiev.ua)
2 V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(41, Nauky Ave., Kyiv 03028, Ukraine)

Structure and Optical Properties of (Co41Fe39B20)x(SiO2)1–x

Section: Optics, Lasers, and Quantum Electronics
Original Author's Text: Ukrainian/English

Abstract: The ellipsometric parameters and for amorphous ferromagnetic alloys in the dielectric matrix, (Co41Fe39B20)(SiO2)1−, have been measured in the spectral interval
= 0.24÷1.0 m ( = 1.24÷5.15 eV) at various -values. On the basis of the data obtained, the spectral dependences of the optical conductivity, (), in those nanocomposites
are studied. The dimensions of ferromagnetic particles were varied from 2 to 10 nm. The surface structure of nanocomposites is researched, by using scanning atomic force microscopy. The
optical properties of nanocomposites are found to depend not only on the metal phase content,
but also on the properties of interface regions, which are signifcantly diferent at metal phase
contents above and below the percolation threshold.

Key words: ferromagnetic alloys, ellipsometry, optical conductivity, interband transitions,
percolation.

References:

  1. F.F. Yang, S.S. Yan, M.X. Yu, Y.Y. Dai, S.S. Kang, Y.X. Chen, S.B. Pan, J.L. Zhang, H.L. Bai, T.S. Xu, D.P. Zhu, S.Z. Qiao, G.L. Liu, L.M. Mei. High-frequency electromagnetic properties of compositionally graded FeCoB–SiO2 granular films deposited on flexible substrates. J. Appl. Phys. 111, 113909 (2012).
    https://doi.org/10.1063/1.4724345
  2. A.V. Shchekochikhin, E.P. Domashevskaya, S.I. Karpov. Influence of the elemental composition on the basis of CoFeB–SiO2 on nonmagnetic and magnetoresistive properties. Kond. Sredy Mezhfaz. Gran. 8, 1 (2006) (in Russian).
  3. I.V. Zolotukhin, Yu.E. Kalinin, O.V. Stognei. Granular magnetic materials. Nanosyst. Nanomater. Nanotekhnol. 2, 1 (2004) (in Ukrainian).
  4. P. Johnsson, S.-I. Aoqui, A.M. Grishin, M. Munakata. Transport anisotropy in hetero-amorphous (CoFeB)–SiO2 thin films. J. Appl. Phys. 93, 8101 (2003).
    https://doi.org/10.1063/1.1558238
  5. A.M. Kalashnikova, V.V. Pavlov, R.V. Pisarev, Yu.E. Kalinin, A.V. Sitnikov, Th. Rasing. Optical and magnetooptical properties of CoFeB/SiO2 and CoFeZr/Al2O3 granular magnetic nanostructures. Phys. Solid State 46, 2163 (2004).
    https://doi.org/10.1134/1.1825565
  6. A.V. Shchekochikhin, E.P. Domashevskaya, S.I. Karpov, O.V. Stognei. Infrared spectra of amorphous nanocomposites and their interatomic interactions. Kond. Sredy Mezhfaz. Gran. 11, 78 (2009) (in Russian).
  7. E.A. Gan'shina, M.V. Vashuk, A.N. Vinogradov et al. Evolution of optical and magneto-optical properties in amorphous metal-insulator nanocomposites. Zh. Eksp. Teor. ` Fiz. 125, 1172 (2004).
  8. A.M. Kalashnikova, V.V. Pavlov, R.V. Pisarev et al. Optical and magneto-optical properties of granular magnetic nanostructures CoFeB/SiO2 and CoFeZr/Al2O3. Fiz. Tverd. Tela 46, 2092 (2004) (in Russian).
  9. Y. Wang, X.X. Zhang, X Yan et al. Study of optical properties of metallic Au (SiO2)1− and Ni (SiO2)1− films. Physica B 279, 113 (2000).
    https://doi.org/10.1016/S0921-4526(99)00683-3
  10. E.P. Domashevskaya, S.A. Starozhilov, S.Yu. Turishchev et al. XANES and USXES studies of interatomic interactions in (Co41Fe39B20) (SiO2)1− nanocomposites. Fiz. Tverd. Tela 50, 135 (2008) (in Russian).
    https://doi.org/10.1134/S1063783408010253
  11. L.V. Poperenko, Yu.V. Kudryavtsev, V.S. Staschuk et al. Optics of Metal Structures (Kyiv University Publ. Center, 2013) (in Ukrainian).
  12. V.S. Staschuk, A.N. Kravchuk. Optical properties of the electron structure in Fe–Co alloys. Ukr. Fiz. Zh. 34, 1246 (1989) (in Ukrainian).