• Українська
  • English

< | Next issue >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 8, p.727-740
https://doi.org/10.15407/ujpe62.08.0727    Paper

Beckwith A.W.1, Moskaliuk S.S.2

1 Physics Department, Chongqing University, College of Physics, Chongqing University Huxi Campus
(No. 44 Daxuechen Nanlu, Shapinba District, Chongqing 401331,people’s Republic of China; e-mail: abeckwith@uh.edu)
2 Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14-b, Metrolohichna Str., Kyiv 03680, Ukraine; e-mail: mss@bitp.kiev.ua)

Generalized Heisenberg Uncertainty Principle in Quantum Geometrodynamics and General Relativity

Section: General Problems of Theoretical Physics
Original Author's Text:  English

Abstract: We focus on the energy fows in the Universe as a simple quantum system and are concentrating on the nonlinear Hamilton–Jacobi equation, which appears in the standard quantum formalism
based on the Schr¨odinger equation. The cases of the domination of radiation, barotropic fuid,
and the quantum matter-energy are considered too. As a result, the generalized Heisenberg
uncertainty principle (GHUP) is formulated for a metric tensor. We also use the Kuzmichev–Kuzmichev geometrodynamics as a way to quantify the interrelationship between the GHUP
for a metric tensor and conditions postulated as to a barotropic fuid, i.e. a dust for the early
Universe conditions.

Key words: generalized Heisenberg uncertainty principle, general relativity, Universe, cos-
mology, quantum geometrodynamics.


  1. C. Will. Was Einstein right? A centenary assessment.In General Relativity and Gravitation, A Centennial Perspective, edited by A. Ashtekar, B. Berger, J. Isenberg, M. MacCallum (Cambridge Univ. Press, 2015).
  2. C. Will. The confrontation between general relativity and experiment. Living Rev. Relativity 17, 4 (2014).
  3. T.G. Downes, G.J. Milburn, C.M. Caves. Optimal quantum estimation for gravitation. General Relativity and Quantum Cosmology 1, 1 (2012); arXiv gr-qc/1108.5220.
  4. V.E. Kuzmichev, V.V. Kuzmichev. Can quantum geometrodynamics complement general relativity? Ukr. J. Phys. 61, (5) 449 (2016).
  5. K.A. Olive et al. Review of particle physics. (Particle Data Group).Chin. Phys. C 38, 090001 (2014).
  6. J.D. Brown, D. Marolf. Relativistic material reference systems. Phys. Rev. D 53, 1835 (1996).
  7. V.E. Kuzmichev, V.V. Kuzmichev. The big bang quantum cosmology: The matter-energy production epoch. Acta Phys. Pol. B 39, 979 (2008).
  8. V.E. Kuzmichev, V.V. Kuzmichev. Quantum corrections to the dynamics of the expanding universe. Acta Phys. Pol. B 44, 2051 (2013).
  9. V.E. Kuzmichev, V.V. Kuzmichev. Quantum geometrodynamical description of the dark sector of the matter-energy content of the universe. Ukr. J. Phys. 60, 664 (2015).
  10. P.A.M. Dirac. The theory of gravitation in Hamiltonian form. Proc. Roy. Soc. A 246, 333 (1958).
  11. R. Arnowitt, S. Deser, C.M. Misner. The dynamics of general relativity. In Gravitation: An Introduction to Current Research. Edited by. L. Witten (Wiley, 1962) [arXiv:grqc/0405109].
  12. C.M. Misner, K.S. Thorne, J.A. Wheeler. Gravitation (Freeman, 1973).
  13. L.D. Landau, E.M. Lifshitz. The Classical Theory of Fields. Course of Theoretical Physics, Vol. 2 (Butterworth-Heinemann, 1975).
  14. A.D. Linde. Elementary Particle Physics and Inflationary Cosmology (Harwood, 1990).
  15. V.E. Kuzmichev, V.V. Kuzmichev. Properties of the quantum universe in quasistationary states and cosmological puzzles. Eur. Phys. J. C 23, 337 (2002).
  16. W.G. Unruh. Why study quantum theory? Canad. J. Phys. 64, 128 (1986).
  17. M. Giovannini. A Primer on the Physics of the Cosmic Microwave Background (World Scientific, 2008).
  18. E.W. Kolb, M.S. Turner. The Early Universe (AddisonWesley, 1990).
  19. A. Beckwith. Gedanken experiment for refining the unruh metric tensor uncertainty principle via Schwarzschild geometry and Planckian space-time with initial nonzero entropy and applying the Riemannian-Penrose inequality and initial kinetic energy for a lower bound to graviton mass (massive gravity). J. High Energy Physics, Gravitation and Cosmology 2, 106 (2016).
  20. C.S. Camara, M.R. de Garcia Maia, J.C. Carvalho, J.A.S. Lima. Nonsingular FRW cosmology and non linear dynamics. Phys. Rev. D 69, 123504 (2004).
  21. J. Barbour. The nature of time. General Relativity and Quantum Cosmology, 2009; http://arxiv.org/pdf/0903.3489.pdf.
  22. J. Barbour. Shape dynamics: An introduction. In Quantum Field Theory and Gravity, Conceptual and Mathematical Advances in the Search for a Unified Framework Edited by F. Finster, O. Muller, M. Nardmann, J. Tolksdorf, E. Zeidler (Birkh¨auser, 2010).
  23. A. Goldhaber, M. Nieto. Photon and graviton mass limits. Rev. Mod. Phys. 82, 939 (2010).
  24. W.J. Handley, S.D. Brechet, A.N. Lasenby, M.P. Hobson. Kinetic initial conditions for inflation. Phys. Rev. D 89, 063505 (2014).
  25. M. Roos. Introduction to Cosmology (Wiley, 2003) [ISBN: 0-470-84909-6].
  26. A.Z. Petrov. Einstein Spaces (Pergamon Press, 1969).
  27. D. Gorbunov, V. Rubakov. Introduction to the Theory of the Early Universe, Cosmological Perturbations and Inflationary Theory (World Scientific, 2011).
  28. S.A. Fulling. Aspects of Quantum Field Theory in Curved Space-Time (Cambridge Univ. Press, 1991).
  29. H. Gutfreund, J. Renn. The Road to Relativity, the History and Meaning of Einstein's "The Foundation of General Relativity" (Princeton Univ. Press, 2015).
  30. J. Griffiths, J. Podolsky. Exact Space-Times in Einstein's General Relativity (Cambridge Univ. Press, 2009).
  31. R.M. Wald. Quantum Field theory in Curved Spacetime and Black Hole Thermodynamics (University of Chicago Press, 1994).
  32. K. Fredenhagen, K. Rejzner. Local covariance and background independence. In Quantum Field Theory and Gravity, Conceptual and Mathematical Advances in the Search for a Unified Framework, Edited by F. Finster, O. Muller, M. Nardmann, J. Tolksdorf, E. Zeidler (Birkh¨auser, 2010).
  33. C. Corda. Primordial gravity's breath. EJTP 9 26 1 (2012).
  34. S. Gilen, D. Oriti. Discrete and Continuum Third Quantization of Gravity. In Quantum Field Theory and Gravity, Conceptual and Mathematical Advances in the Search for a Unified Framework, Edited by F. Finster, O. Muller, M. Nardmann, J. Tolksdorf, E. Zeidler (Birkh¨auser, 2010).
  35. N.D. Birrell, P.C.W. Davies. Quantum Fields in Curved Space (Cambridge Univ. Press, 1982).
  36. A. Beckwith. Gedanken experiment for fluctuation of mass of a graviton, based on the trace of GR stress energy tensorpre Planckian conditions that lead to gaining of graviton mass, and Planckian conditions that lead to graviton mass shrinking to 10–62 grams. J. of High Energy Physics, Gravitation and Cosmology, 2, 19 (2016).
  37. A. Meszhlumian. Towards the Theory of Stationary Universe. In Texas/PASCOS 92: Relativistic astrophysics and particle cosmology. Edited by C. Akerlof, M. Srednicki (Annals of the New York Academy of Sciences, 1992), V. 688.
  38. A. Beckwith. Gedanken experiment examining how kinetic energy would dominate potential energy, in pre-Planckian space-time physics, and allow us to avoid the BICEP 2 mistake. J. of High Energy Physics, Gravitation and Cosmology 2, 75 (2016).
  39. Y. Jack Ng. Holographic foam, dark energy and infinite statistics. Phys. Lett. B 657, 10 (2007).
  40. Y. Jack Ng. Spacetime foam: From entropy and holography to infinite statistics and nonlocality. Entropy 10, 441 (2008).
  41. I. Ciufolini and J. Wheeler. Gravitation and Inertia (Princeton Univ. Press, 1995).
  42. T. Padmanabhan. Cosmological constant – the weight of the vacuum. Phys. Rept. 380, 235 (2003).
  43. C. Egan, C.H. Lineweaver. A larger estimate of the entropy of the universe. Astrophys. J. 710, 1825 (2010).
  44. A.F. Ali, S. Das. Cosmology from quantum potential. Phys. Lett. B 741, 276 (2015).
  45. I. Haranas, I. Gkigkitzis. The mass of graviton and its relation to the number of information according to the holographic principle. Int. Scholarly Research Notices 2014, 1 (2014).
  46. C. Rovelli, F. Vidotto. Covariant Loop Quantum Gravity, an Elementary Introduction to Quantum Gravity and Spinfoam Theory (Cambridge Univ. Press, 2015).
  47. G. Galloway, P. Miao, R. Schoen. Initial data and the Einstein constraint equations. In General Relativity and Gravitation, A centennial Perspective. Edited by A. Ashtekar, B. Berger, J. Isenberg, M. MacCallum (Cambridge Univ. Press, 2015).
  48. H. Wen, F.Y. Li, Z.Y. Fang. Very high frequency gravitational waves from magnetars and gamma-ray burst. arXiv:1608.03186 (2016).
  49. M. Bojowald. Can the Arrow of Time be understood from Quantum Cosmology? In The Arrows of Time, a Debate in Cosmology. Edited by L. Mersini, R. Vaas (Springer, 2012).
  50. T. Padmanabhan. Gravitation, Foundations and Frontiers (Cambridge Univ. Press, 2010).