• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 8, p.717-726
https://doi.org/10.15407/ujpe62.08.0717    Paper

Manoilov E.G., Kravchenko S.A., Snopok B.A.

V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(41, Prosp. Nauky, Kyiv 03028, Ukraine; e-mail: snopok@isp.kiev.ua)

Features of Near-Surface Layer at Monomolecular Isotropic Adsorp-tion: Nonequilibrium Molecular Dynamics Simulation

Section: General Problems of Theoretical Physics
Original Author's Text:  Ukrainian/English

Abstract: Processes running in the gas phase near a solid surface have been analyzed in the framework of
nonequilibrium dynamics and by simulating the irreversible monomolecular isotropic adsorption. Their infuence on the adsorption kinetics is analyzed. A complicated spatial organization
of particles in the near-surface layer, where the particle concentration and energy vary in time,
is revealed,. It is found that the local particle concentration can either decrease (down to about
60% of the initial value) or increase with the distance from the surface, depending on the system concerned. The obtained results can be used to analyze and to predict processes running
in the near-surface layer of elements for the sensor and electronic engineering, gas dynamics, and other areas, where the ballistic character and the kinematics of motion dominate and
govern the functional properties of the system.

Key words: molecular dynamics, isotropic adsorption, adsorption kinetics, near-surface concentration.

References:

  1. L. Ben, M. Charles. Molecular Dynamics with Deterministic and Stochastic Numerical Methods (Springer, 2015).
  2. I. Tinoco, K. Sauer, J.C. Wang, J.D. Puglisi. Physical Chemistry: Principles and Applications in Biological Sciences (Prentice Hall, 2002).
  3. G.D. Billing, K.V. Mikkelsen. Introduction to Molecular Dynamics and Chemical Kinetics (Wiley-Interscience, 1996).
  4. V.A. Shchukin, D. Bimberg. Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys. 71, 1125 (1999).
    https://doi.org/10.1103/RevModPhys.71.1125
  5. E.B. Kaganovych, S.O. Kravchenko, I.M. Krishchenko, E.G. Manoilov. Production of an ensemble of Au (Ag) nanoparticles by pulsed laser deposition. Fiz. Khim. Tverd. Tila 14, 649 (2013) (in Ukrainian).
  6. J.P. Freidberg. Plasma Physics and Fusion Energy (Cambridge Univ. Press, 2007) [ISBN: 978-0-521-85107-7].
    https://doi.org/10.1017/CBO9780511755705
  7. H.J. Reich. Principles of Electron Tubes (Literary Licensing LLC, 2013) [ISBN: 1258664062].
  8. A.W. Chao, K.H. Mess, M. Tigner. Handbook of Accelerator Physics and Engineering (World Scientific, 2013) [ISBN: 978-981-4415-84-2].
    https://doi.org/10.1142/8543
  9. N. Orgovan, D. Patko, C. Hos, S. Kurunczi, B. Szab’o, J.J. Ramsden, R. Horvath. Sample handling in surface sensitive chemical and biological sensing: A practical review of basic fluidics and analyte transport. Adv. Colloid Interf. Sci. 211, 1 (2014).
    https://doi.org/10.1016/j.cis.2014.03.011
  10. V.P. Budaev, L.N. Khimchenko. Fractal structure of deposited nano-films in fusion devices. Vopr. At. Nauki Tekhn. Ser. Termoyadern. Sintez No. 3, 34 (2008) (in Russian).
  11. M. Malmsten. Biopolymers at Interfaces (CRC Press Science, 2003) [ISBN: 978-0-8247-0863-4].
    https://doi.org/10.1201/9780824747343
  12. R.D. Zucker, O. Biblarz. Fundamentals of Gas Dynamics (Wiley, 2002) [ISBN: 978-0-471-05967-7].
  13. O.V. Bychuk, B. O'Shaughnessy. Anomalous diffusion at liquid surfaces. Phys. Rev. Lett. 74, 1795 (1995).
    https://doi.org/10.1103/PhysRevLett.74.1795
  14. O.V. Bychuk, B. O'Shaughnessy. Adsorption-desorption kinetics at liquid surfaces. J. Colloid Interf. Sci. 167, 193 (1994).
    https://doi.org/10.1006/jcis.1994.1348
  15. I.A. Myasnikov, V.Ya. Sukharev, L.Yu. Kuprianov, S.A. Zav'yalov. Semiconductor Sensors in Physicochemical Investigations (Nauka, 1991) (in Russian).
  16. J.W. Evans. Random and cooperative sequential adsorption. Rev. Mod. Phys. 65, 1281 (1993).
    https://doi.org/10.1103/RevModPhys.65.1281
  17. E.G. Manoilov, S.A. Kravchenko, B.A. Snopok. Methodology of the object-oriented modeling of adsorption processes: The features in the dynamics of formation and spatial self-organization of surface structures. Optoelektron. Poluprovodn. Tekhn. 51, 135 (2016) (in Russian).
  18. E.G. Manoilov, S.A. Kravchenko, B.A. Snopok. Peciliarities of cooperative adsorption described by the sticking coefficient depending on the number of neighbors. Teor. Eksp. Khim. 53, 17 (2017) (in Russian).
  19. B.A. Snopok, I.V. Kruglenko. Nonexponential relaxations in sensor arrays: Forecasting strategy for electronic nose performance. Sensor. Actuat. B 106, 101 (2005).
    https://doi.org/10.1016/j.snb.2004.05.064
  20. P. Boltovets, S. Shinkaruk, L. Vellutini, B. Snopok. Selftuning interfacial architecture for Estradiol detection by surface plasmon resonance biosensor. Biosens. Bioelectron. 90, 91 (2017).
    https://doi.org/10.1016/j.bios.2016.11.017
  21. B.A. Snopok. Nonexponential kinetics of surface chemical reactions. Theor. Exper. Chem. 50, 67 (2014).
    https://doi.org/10.1007/s11237-014-9351-0
  22. I.V. Savelyev. Physics. A General Course. Vol. 1. Mechanics, Molecular Physics (Mir, Moscow, 1979).