• Українська
  • English

<Prev | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 8, p. 653-660
https://doi.org/10.15407/ujpe62.08.0653    Paper

Hussain K.A.1, Mohsin M.K.1, Sharrad F.I.2

1 Department of Physics, College of Science, University of Babylon
(51002Hilla, Iraq.)
2 Department of Physics, College of Science, University of Kerbala
(56001 Karbala, Iraq.; e-mail: fadhil.altaie@gmail.com)

Calculation of the Positive Parity Yrast Bands of 190–198Hg Nuclei

Section: Nuclei and Nuclear Reactions
Original Author's Text: Ukrainian

Abstract: The Interacting Boson Model (IBM-1) has been used to calculate the low-lying positive parity yrast bands in 190–198Hg nuclei. The systematic yrast level and electric reduced transition
probabilities B(2)↓ of those nuclei are calculated and compared with the available experimental
data. The ratio of the excitation energies of frst 4+ and frst 2+ excited states, 4/2, is also
studied for the O(6) symmetry for these nuclei. Furthermore, as a measure to quantify the
evolution, we have studied systematically the yrast level of some of the low-lying quadrupole collective states in comparison to the available experimental data. Moreover,
we have studied the systematic B(2) values, and the moment of inertia as a function of the
squared rotational energy for even proton = 80 and 110 6 6 118 nuclei indicates the
disappearance of back-bending properties. The results of this calculation are in good agreement
with the corresponding available experimental data. The analytic IBM-1 calculation of the
yrast level and B(2) values of even-even Hg nuclei is performed in the framework of O(6)
symmetry. The contour plot of the potential energy surfaces shows that the nuclei are deformed
and have -unstable-like characters.

Key words: IBM-1, B(E2) values, energy levels, potential energy.

References:

  1. R.M. Lieder, H. Beuscher, W.F. Davidson, A. Neskakis, C. Mayer-B¨oricke. Excitation of high-spin states in 190,191,192,193,194Hg through (,) reactions. Nucle. Phys. A 248, 317 (1975).
    https://doi.org/10.1016/0375-9474(75)90168-2
  2. A. Sethi, N.M. Hintz, D.N. Mihailidis, A.M. Mack, M. Gazzaly, K. W. Jones, G. Pauletta, L. Santi, D. Goutte. Inelastic proton scattering from Pt isotopes and the interacting boson model. Phys. Rev. C 44, 700 (1991).
    https://doi.org/10.1103/PhysRevC.44.700
  3. A. Arima, F. Iachello. Interacting boson model of collective nuclear states IV. The (6) limit. Ann. Phys. NY 123, 468 (1979).
    https://doi.org/10.1016/0003-4916(79)90347-6
  4. H.H. Kassim, F.I. Sharrad. Negative parity low-spin states of even-odd 187−197Pt isotopes. Nucl. Phys. A 933, 1 (2015).
    https://doi.org/10.1016/j.nuclphysa.2014.08.097
  5. T. Otsuka, A. Arima, F. Iachello. Nuclear shell model and interacting bosons. Nucl. Phys. A 309, 1 (1978).
    https://doi.org/10.1016/0375-9474(78)90532-8
  6. F. Iachello, A. Arima. Boson symmetries in vibrational nuclei. Phys. Lett. B 53, 309 (1974).
    https://doi.org/10.1016/0370-2693(74)90389-X
  7. A. Arima, F. Iachello. Collective nuclear states as representations of a SU(6) group. Phys. Rev. Lett. 35, 1069 (1975).
    https://doi.org/10.1103/PhysRevLett.35.1069
  8. R. Kumar, S. Sharma, J.B. Gupta. Character of quasibands in 150 sm using IBM. Arm. J. Phys. 3, 150 (2010).
  9. D. Vretenar, G. Bonsignori, M. Savoia. One and two broken pairs in the interacting boson model: High-spin states in 190,192,194Hg. Phys. Rev. C 47, 2019 (1993).
    https://doi.org/10.1103/PhysRevC.47.2019
  10. S. Yoshida, N. Takigawa. Shape dependence of pairing gap energies and the structure of Hg and Pb isotopes. Phys. Rev. C 55, 1255 (1997).
    https://doi.org/10.1103/PhysRevC.55.1255
  11. L. Weissman, R.H. Mayer, G. Kumbartzki, N. BenczerKoller, C. Broude, J.A. Cizewski, M. Hass, J. Holden, R.V.F. Janssens, T. Lauritsen, I.Y. Lee, A.O. Macchiavelli, D.P. McNabb, M. Satteson. Single particle signatures in high-spin, quasicontinuum states in Hg-193, Hg-194 from -factor measurements. Phys. Lett. B 446, 22 (1999).
    https://doi.org/10.1016/S0370-2693(98)01514-7
  12. K. Nomura, R. Rodr’ıguez-Guzm’an, L.M. Robledo. Shape evolution and the role of intruder configurations in Hg isotopes within the interacting boson model based on a Gogny energy density functional. Phys. Rev. C 87, 064313 (2013).
    https://doi.org/10.1103/PhysRevC.87.064313
  13. C. Bernards et al. Investigation of 0+ states in 198Hg after two-neutron pickup. Phys. Rev. C 87, 024318 (2013).
    https://doi.org/10.1103/PhysRevC.87.024318
  14. J.E. Garc´ıa-Ramos, K. Heyde. Disentangling the nuclear shape coexistence in even-even Hg isotopes using the interacting boson model. arXiv:1410.2869 (2014).
  15. N. Bree et al. Shape coexistence in the neutron-deficient even-even 182−188Hg isotopes studied via Coulomb excitation. Phys. Rev. Lett. 112, 162701 (2014).
    https://doi.org/10.1103/PhysRevLett.112.162701
  16. J.M. Boillos, P. Sarriguren. Effects of deformation on the -decay patterns of light even-even and odd-mass Hg and Pt isotopes. Phys. Rev. C 91, 034311 (2015).
    https://doi.org/10.1103/PhysRevC.91.034311
  17. H.H. Kassim, F.I. Sharrad. Energy levels and electromagnetic transition of 190˘196Pt nuclei. Int. J. Mod. Phys. E 23, 1450070 (2014).
    https://doi.org/10.1142/S0218301314500700
  18. H.H. Kassim, F.I. Sharrad. High-spin structure in 192−196Pt isotopes. Research & Reviews: J. of Phys. 3, 11 (2014).
  19. H.H. Kassim, F.I. Sharrad. O(6) symmetry of even 186−198Pt isotopes under the framework of interacting boson model (IBM-1). Int. J. of Sci. and Research (IJSR) 3, 2189 (2014).
  20. F.I. Sharrad, H.Y. Abdullah, N. AL-Dahan, N.M. Umran, A.A. Okhunov, H. Abu-Kassim. Low-lying states of 184W and 184Os nuclei. Chinese Phys. C 37, 034101 (2013).
    https://doi.org/10.1088/1674-1137/37/3/034101
  21. F.I. Sharrad, H.Y. Abdullah, N. AL-Dahan, A.A. Mohammed-Ali, A.A. Okhunov, H.A. Kassim. Shape transition and collective excitations in neutron-rich 170−178Yb nuclei. Rom. J. Phys. 57, 1346 (2012).
  22. H.H. Khudher, A.K. Hasan, F.I. Sharrad. Calculation of energy levels, transition probabilities, and potential energy surfaces for 120−126Xe even-even isotopes. Ukr. J. Phys. 62, 152 (2017).
    https://doi.org/10.15407/ujpe62.02.0152
  23. F. Iachello, A. Arima. The Interacting Boson Model (Cambridge Univ. Press, 1987) [ISBN: 978-0521302821].
    https://doi.org/10.1017/CBO9780511895517
  24. R.F. Casten, D.D Warner. The interacting boson approximation. Rev. Mod. Phys. 60, 389 (1988).
    https://doi.org/10.1103/RevModPhys.60.389
  25. F. Iachello, P. Van Isacker. The interacting Boson Mode (Cambridge Univ. Press, 1991) [ISBN: 978-0521380928].
    https://doi.org/10.1017/CBO9780511549724
  26. http://www.nndc.bnl.gov/chart/getENSDFDatasets.jsp.
  27. B.J. Singh. Nuclear data sheets for = 190. Nucl. Data Sheets 99, 275 (2003).
    https://doi.org/10.1006/ndsh.2003.0009
  28. C.M. Baglin. Nuclear data sheets for = 192. Nucl. Data Sheets 84, 717 (1998).
    https://doi.org/10.1006/ndsh.1998.0017
  29. B.J. Singh. Nuclear data sheets for = 194. Nucl. Data Sheets 107, 1531 (2006).
    https://doi.org/10.1016/j.nds.2006.05.004
  30. H. Xiaolong. Nuclear data sheets for = 196. Nucl. Data Sheets 108, 1093 (2007).
    https://doi.org/10.1016/j.nds.2007.05.001
  31. H. Xiaolong. Nuclear data sheets for = 198. Nucl. Data Sheets 110, 2533 (2009).
    https://doi.org/10.1016/j.nds.2009.09.002