• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 7, p.615-624
https://doi.org/10.15407/ujpe62.07.0615    Paper

Kupchak I., Serpak N.

V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(41, Nauka Ave., Kyiv 03028, Ukraine; e-mail: kupchak@isp.kiev.ua)

Electronic and Magnetic Properties of Spinel Co3O4 (111) Surface in GGA + U Approximation

Section: Solid Matter
Original Author's Text: Ukrainian

Abstract: The atomic structure and electronic properties of the spinel Co3O4 (111) surface are calculated
within the methods of density functional theory. Possible types of the surface are analyzed, and
their formation energies are calculated. Electron states formed at the surface by broken bonds
are studied in detail, and their partial density of states is calculated. It is shown that, unlike
the bulk of spinel, its surface has nontrivial magnetic properties, because Co atoms acquire an
additional magnetic moment under near-surface conditions.

Key words: spinel, cobalt oxide, magnetic surface structure.

References:

  1. A. Walsh, S.-H. Wei, Y. Yan, M.M. Al-Jassim, J.A. Turner, M. Woodhouse, B.A. Parkinson. Structural, magnetic, and electronic properties of the Co–Fe–Al oxide spinel system: Density-functional theory calculations. Phys. Rev. B 76, 165119 (2007).
    https://doi.org/10.1103/PhysRevB.76.165119
  2. E. Meza, D. Alburquenque, J. Ortiz, J.L. Gautier. Lithium cobalt spinel oxide: A structural and electrochemical study. J. Chil. Chem. Soc. 53, 1494 (2008).
    https://doi.org/10.4067/S0717-97072008000200010
  3. D. Su, S. Dou and G. Wang. Sci. Rep. 4, 5767 (2014).
    https://doi.org/10.1038/srep05767
  4. X. Xie, Y. Li, Z.-Q. Liu, M. Haruta, W. Shen. Single crystalline Co3O4 nanocrystals exposed with different crystal planes for Li–O2 batteries. Nature 458, 746 (2009).
    https://doi.org/10.1038/nature07877
  5. Y.-Z. Wang, Y.-X. Zhao, C.-G. Gao and D.-S. Liu. Origin of the high activity and stability of Co3O4 in lowtemperature CO oxidation. Catal. Lett. 125, 134 (2008).
    https://doi.org/10.1007/s10562-008-9531-4
  6. C. Ohnishi, K. Asano, S. Iwamoto, K. Chikama, M. Inoue. Alkali-doped Co3O4 catalysts for direct decomposition of N2O in the presence of oxygen. Catal. Today 120, 145 (2007).
    https://doi.org/10.1016/j.cattod.2006.07.042
  7. K. Schmidt-Szalowski, K. Krawczyk, J. Petryk. The properties of cobalt oxide catalyst for ammonia oxidation. Appl. Catal. A 175, 147 (1998).
    https://doi.org/10.1016/S0926-860X(98)00206-3
  8. M. Bajdich, M. Garcia-Mota, A. Vojvodic, J.K. Norskov, A.T. Bell. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135, 13521 (2013).
    https://doi.org/10.1021/ja405997s
  9. H.-J. Kim, J.-H. Lee. Highly sensitive and selective gas sensors using -type oxide semiconductors: Overview. Sens. Actuat. B 192, 607 (2014).
    https://doi.org/10.1016/j.snb.2013.11.005
  10. D.R. Miller, S.A. Akbar, P.A. Morris. Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sens. Actuat. B 204, 250 (2014).
    https://doi.org/10.1016/j.snb.2014.07.074
  11. Oxide Materials at the Two-Dimensional Limit, edited by F.P. Netzer, A. Fortunelli (Springer, 2016).
    https://doi.org/10.1007/978-3-319-28332-6
  12. J.S. Griffith. The Theory of Transition-Metal Ions (Cambridge Univ. Press, 1971).
  13. W.L. Roth. The magnetic structure of Co3O4. J. Phys. Chem. Solids 25, 1 (1964).
    https://doi.org/10.1016/0022-3697(64)90156-8
  14. J. Noh, O.I. Osman, S.G. Aziz, P. Winget, J.-L. Bredas. Magnetite Fe3O4 (111) surfaces: Impact of defects on structure, stability, and electronic properties. Chem. Mater. 27, 5856 (2015).
    https://doi.org/10.1021/acs.chemmater.5b02885
  15. A. Montoya, B.S. Haynes. Periodic density functional study of Co3O4 surfaces. Chem. Phys. Lett. 502, 63 (2011).
    https://doi.org/10.1016/j.cplett.2010.12.015
  16. X.-L. Xu, Z.-H. Chen, Y. Li, W.-K. Chen, J.-Q. Li. Bulk and surface properties of spinel Co3O4 by density functional calculations. Surf. Sci. 603, 653 (2009).
    https://doi.org/10.1016/j.susc.2008.12.036
  17. J. Chen, A. Selloni. Electronic states and magnetic structure at the Co3O4(110) surface: A first-principles study. Phys. Rev. B 85, 85306 (2012).
    https://doi.org/10.1103/PhysRevB.85.085306
  18. J.M. Perez-Mato, S.V. Gallego, E.S. Tasci, L. Elcoro, G. de la Flor, M.I. Aroyo. Symmetry-based computational tools for magnetic crystallography. Annu. Rev. Mater. Res. 45, 217 (2015).
    https://doi.org/10.1146/annurev-matsci-070214-021008
  19. Y.E. Kitaev, P. Tronc. Ferromagnetic and antiferromagnetic ordering in the wurtzite-type diluted magnetic semiconductors. Phys. Solid State 54, 520 (2012);
    https://doi.org/10.1134/S1063783412030146
  20. Y.E. Kitaev, P. Tronc. Ferromagnetic and antiferromagnetic ordering in the wurtzite-type diluted magnetic semiconductors. Phys. Solid State 54, 520 (2012); P. Tronc, private communication.
  21. P. Giannozzi, S. Baroni, N. Bonini et al. Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).
    https://doi.org/10.1088/0953-8984/21/39/395502
  22. J.P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
    https://doi.org/10.1103/PhysRevLett.77.3865
  23. J. Hubbard. Electron correlations in narrow energy bands. Proc. R. Soc. London A 276, 238 (1963).
    https://doi.org/10.1098/rspa.1963.0204
  24. J.D. Pack, H.J. Monkhorst. "Special points for Brillouinzone integrations" – a reply. Phys. Rev. B 16, 1748 (1977).
    https://doi.org/10.1103/PhysRevB.16.1748
  25. M. Methfessel, A.T. Paxton. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616 (1989).
    https://doi.org/10.1103/PhysRevB.40.3616
  26. A. Soon, M. Todorova, B. Delley, C. Stampfl. Thermodynamic stability and structure of copper oxide surfaces: A first-principles investigation. Phys. Rev. B 75, 125420 (2007).
    https://doi.org/10.1103/PhysRevB.75.125420
  27. G.J. Martyna, M.E. Tuckerman. A reciprocal space based method for treating long range interactions in ab initio and force-field-based calculations in clusters. J. Chem. Phys. 110, 2810 (1999).
    https://doi.org/10.1063/1.477923
  28. W. Meyer, K. Biedermann, M. Gubo, L. Hammer, K. Heinz. Surface structure of polar Co3O4(111) films grown on Ir(100)-(1x1). J. Phys.: Condens. Matter 20, 265011 (2008).
    https://doi.org/10.1088/0953-8984/20/26/265011
  29. P. Ferstl et al. Adsorption and activation of CO on Co3O4 (111) thin films. J. Phys. Chem. C 119, 16688 (2015).
    https://doi.org/10.1021/acs.jpcc.5b04145
  30. S.C. Petitto, E.M. Marsh, G.A. Carson, M.A. Langell. Cobalt oxide surface chemistry: The interaction of CoO (100), Co3O4 (110) and Co3O4 (111) with oxygen and water. J. Mol. Catal. A 281, 49 (2008).
    https://doi.org/10.1016/j.molcata.2007.08.023
  31. W. Geertsma, D. Khomskii. Influence of side groups on 90∘ superexchange: A modification of the Goodenough– Kanamori–Anderson rules. Phys. Rev. B 54, 3011 (1996).
    https://doi.org/10.1103/PhysRevB.54.3011
  32. M.S. Martin-Gonz’alez et al. A solid-state electrochemical reaction as the origin of magnetism at oxide nanoparticle interfaces. J. Electrochem. Soc. 157, E31 (2010).
    https://doi.org/10.1149/1.3272638
  33. M.A. Garc’ıa et al. Surface magnetism in ZnO/Co3O4 mixtures. J. Appl. Phys. 107, 043906 (2010).
    https://doi.org/10.1063/1.3294649
  34. T.-L. Phan, N.X. Nghia, S.C. Yu. Raman scattering spectra and magnetic properties of polycrystalline Zn1− Co O ceramics. Solid State Commun. 152, 2087 (2012).
    https://doi.org/10.1016/j.ssc.2012.08.026