• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 7, p.589-593
https://doi.org/10.15407/ujpe62.07.0589    Paper

Kabir M.H.1, Alam Miah M.B.1, Asaduzzaman S.1,2, Ahmed K.1

1 Department of Information and Communication Technology, Mawlana Bhashani Science and
Technology University
(Santosh, Tangail-1902, Bangladesh; e-mail: sayed.swe@diu.edu.bd, samonna25@gmail.com)
2 Department of Software Engineering, Dafodil International University, Dhaka, Bangladesh
(e-mail: sayed.swe@diu.edu.bd, samonna25@gmail.com)

Slotted Core Circular PCF in Chemical Sensing Applications

Section: Optics, Lasers, and Quantum Electronics
Original Author's Text: English

Abstract: A circular photonic crystal fiber including slotted core (SC-PCF) is proposed for chemical
sensing application. The full vectorial fnite-element method (FEM) has been applied for a
numerical investigation by altering geometrical metrics in the interval of wavelengths from 0.7
to 1.5 �m. An optimized structure is selected by investigating the proposed PCF. The main
focus of this research is to fnd out the hazardous and toxic chemicals. The proposed structure
shows a relative sensitivity of 47.08% and a confnement loss of 3.11×10−5
dB/m at the same
time.

Key words: slotted core, fnite-element method, photonic crystal fiber, photonic bandgap
fiber.

References:

  1. J.C. Knight. Photonic crystal fibers. Nature 424, 847 (2003).
    https://doi.org/10.1038/nature01940
  2. J.C. Knight, J. Broeng, T.A. Birks, P.S.J. Russell. Photonic band gap guidance in optical fiber. Science 282, 1476 (1998).
    https://doi.org/10.1126/science.282.5393.1476
  3. J.M. Fini. Microstructure fibers for optical sensing in gasses and liquids. Meas. Sci. Technol. 15, 1120 (2004).
    https://doi.org/10.1088/0957-0233/15/6/011
  4. J.C. Knight, T.A. Birks, P.S.J. Russell, D.M. Atkin. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547 (1996).
    https://doi.org/10.1364/OL.21.001547
  5. T.A. Birks, J.C. Knight, P.S.J. Russell. Endlessly singlemode photonic crystal fiber. Opt. Lett. 22, 961 (1997).
    https://doi.org/10.1364/OL.22.000961
  6. K. Ahmed, M. Morshed. Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications. Sensing and Bio-Sensing Research. 7, 1 (2016).
    https://doi.org/10.1016/j.sbsr.2015.10.005
  7. K. Ahmed, S. Asaduzzaman, M.F.H. Arif. Numerical analysis of O-OPCF structure for sensing applications with high relative sensitivity. In 2nd International Conference on Electrical Information and Commmunication Technology (EICT), Bangladesh, 2015.
  8. S. Asaduzzaman, K. Ahmed, M.F.H. Arif, M. Morshed. Application of microarray-core based modified photonic crystal fiber in chemical sensing. In 1st International Conference on Electrical and Electronics Engineering, Bangladesh, 2015.
    https://doi.org/10.1109/CEEE.2015.7428286
  9. M. Arjmand, R. Talebzadeh. Optical filter based on photonic crystal resonant cavities. Optoelectronics and Advanced Materials-Rapid Communications 9 (1-2), 32 (2015).
  10. K. Fasihi. High-contrast all-optical controllable switching and routing in nonlinear photonic crystals. J. of Lightwave Technology 32 (18), 3126 (2014).
    https://doi.org/10.1109/JLT.2014.2334613
  11. M. Morshed, M.F.H. Arif, S. Asaduzzaman, K. Ahmed. Design and characterization of photonic crystal fiber for sensing applications. Eur. Sci. J. 11, 228 (2015).
  12. M. Morshed, S. Asaduzzaman, M.F.H. Arif, K. Ahmed. Proposal of simple gas sensor based on micro structure optical fiber. In 2nd International Conference on Electrical Engineering and Information & Communication Technology, Bangladesh, 2015.
    https://doi.org/10.1109/ICEEICT.2015.7307400
  13. M. Morshed, M.I. Hassan, T.K. Roy, M.S. Uddin, S.M.A. Razzak. Microstructure core photonic crystal fiber for gas sensing applications. Appl. Optics. 54, 8637 (2015).
    https://doi.org/10.1364/AO.54.008637
  14. M. Morshed, M. I. Hasan, S.M.A. Razzak. Enhancement of the sensitivity of gas sensor based on microstructure optical fiber. Photonic Sensors 5 (4), 312 (2015).
    https://doi.org/10.1007/s13320-015-0247-y
  15. J.M. Brosi, C. Koos, L.C. Andreani, et al. High-speed lowvoltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Optics Express 16 (6), 4177 (2008).
    https://doi.org/10.1364/OE.16.004177
  16. J.C. Knight, T.A. Birks, P.S.J. Russell, D.M. Atkin. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21 (19), 1547 (1996).
    https://doi.org/10.1364/OL.21.001547
  17. H. Ademgil. Highly sensitive octagonal photonic crystal fiber based sensor. Optik-Intern. J. for Light and Electron Optics 125, 6274 (2014).
    https://doi.org/10.1016/j.ijleo.2014.08.018
  18. S.A. Razzak, M.A.G. Khan, F. Begum, S. Kaijage. Guiding properties of a decagonal photonic crystal fiber. J. of Microwaves, Optoelectr., and Electromagn. Appl. 6 (1), 44 (2007).
  19. Y. Hou, F. Fan, Z.-W. Jiang, X.-H. Wang, S.-J. Chang. Highly birefringent polymer terahertz fiber with honeycomb cladding. Optik-Intern. J. for Light and Electron Optics 124 (17), 3095 (2013).
    https://doi.org/10.1016/j.ijleo.2012.09.040
  20. S. Asaduzzaman, M.F.H. Arif, K. Ahmed, P. Dhar. Highly sensitive simple structure circular photonic crystal fiberbased chemical sensor. In: IEEE Intern. WIE Conference on Electrical and Computer Engineering (WIECON-ECE) 2015, pp. 151–154.
    https://doi.org/10.1109/WIECON-ECE.2015.7443884
  21. M. Morshed, M.F.H. Arif, S. Asaduzzaman, K. Ahmed. Design and characterization of photonic crystal fiber for sensing applications. Eur. Sci. J. 11 (12), 228 (2015).
  22. M. Morshed, M.I. Hasan, S.A. Razzak. Enhancement of the sensitivity of gas sensor based on microstructured optical fiber. Photonic Sensors 5, 312 (2015).
    https://doi.org/10.1007/s13320-015-0247-y
  23. F. Begum, Y. Namihira, S.A. Razzak, S. Kaijage, N.H. Hai, T. Kinjo, K. Miyagi, N. Zou. Design and analysis of novel highly nonlinear photonic crystal fibers with ultraflattened chromatic dispersion. Opt. Commun. 282, 1416 (2009).
    https://doi.org/10.1016/j.optcom.2008.12.005
  24. M.S. Habib, M.S. Habib, S.A. Razzak, M.A. Hossain. Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber. Opt. Fiber Technol. 19, 461 (2013).
    https://doi.org/10.1016/j.yofte.2013.05.014
  25. M.S. Habib, M.S. Habib, M.I. Hasan, S.A. Razzak. A single mode ultra flat high negative residual dispersion compensating photonic crystal fiber. Opt. Fiber Technol. 20, 328 (2014).
    https://doi.org/10.1016/j.yofte.2014.03.005
  26. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, S. Leon-Saval. Foundations f Photonic Crystal Fibers (World Scientific, 2005).
    https://doi.org/10.1142/p367
  27. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. Moore, K. Frampton, F. Koizumi, D. Richardson, T. Monro. Bismuth glass holey fibers with high nonlinearity. Opt. Express 12 (21), 5082 (2004).
    https://doi.org/10.1364/OPEX.12.005082
  28. C. Lecaplain, B. Orta¸c, G. Machinet, J. Boullet, M. Baumgartl, T. Schreiber, E. Cormier, A. Hideur. High-energy femtosecond photonic crystal fiber laser. Opt. Lett. 35 (19), 3156 (2010).
    https://doi.org/10.1364/OL.35.003156
  29. R. Holzwarth, T. Udem, T.W. H¨ansch, J.C. Knight, W.J. Wadsworth, P.S.J. Russell. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85 (11), 2264 (2000).
    https://doi.org/10.1103/PhysRevLett.85.2264
  30. J.M. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78 (4), 1135 (2006).
    https://doi.org/10.1103/RevModPhys.78.1135
  31. J. Park, S. Lee, S. Kim, K. Oh. Enhancement of chemical sensing capability in a photonic crystal fiber with a hollow high index ring defect at the center. Optics Express 19, 1921 (2011).
    https://doi.org/10.1364/OE.19.001921
  32. J. M. Fini. Microstructure fibres for optical sensing in gases and liquids. Meas. Sci. Technol. 15 (6), 1120 (2004).
    https://doi.org/10.1088/0957-0233/15/6/011
  33. H. Ademgil. Highly sensitive octagonal photonic crystal fiber based sensor. Optik-Intern. J. for Light and Electron Optics 125, 6274 (2014).
    https://doi.org/10.1016/j.ijleo.2014.08.018