• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 7, p.569-582
https://doi.org/10.15407/ujpe62.07.0569    Paper

Krech A.V.1, Galunov N.Z.1,2

1 Institute for Scintillation Materials, National Academy of Sciences of Ukraine
(60, Nauky Ave., Kharkiv 61072, Ukraine; e-mail: antonkrech@gmail.com)
2 V.N. Karazin National University of Kharkiv
(4, Svobody Sq., Kharkiv 61022, Ukraine)

Composite Scintillators and Some Features of Their Radiation Resistance

Section: Atoms and Molecules
Original Author's Text: English

Abstract: Nowadays, composite scintillators fnd applications in a growing number of tasks dealing with
the detection of ionizing radiation. They have several advantages in comparison with other
scintillation materials. With the emergence of a new generation of accelerators, the radiation
load on detectors is signifcantly increased. Therefore, the development of materials with high
radiation resistance for radiation detectors becomes an important task. We propose to apply
composite scintillators as radiation-resistant materials. The most important factor is that irradiation can signifcantly modify the characteristics of a scintillation material. The aim of this
work was to study the specifc features of possible radiation-induced damages and transformations in composite scintillators under the action of ionizing radiation. A comparative analysis
of the relative light yield, transmittance, and luminescence spectra, as well as their dependences on the accumulated dose, is carried out for various composite scintillators containing
grains of organic or inorganic single crystals, such as Gd2SiO5:Ce, Gd2Si2O7:Ce, Al2O3 :Ti,
Y2SiO5:Ce, and Y3Al5O12:Ce. Probable mechanisms of radiation-induced changes occurring
in scintillators under irradiation are proposed, and the infuence of those processes on the
radiation resistance of composite scintillators is analyzed.

Key words: composite scintillators, radiation resistance.


  1. N.Z. Galunov. New generation of high effective organic scintillators and their process technology. In Transactions of International Technology Transfer Conference (Iowa State University, USA, 1998), p. 124.
  2. S.V. Budakovsky, N.Z. Galunov, V.P. Seminozhenko. Some new approaches to obtain the organic crystals with high quality. In Book of Lecture Notes of First Interna580 tional School on Crystal Growth Technology (Beatenberg, Switzerland, 1998), p. 777.
  3. N.Z. Galunov, J.H. Baker, S.V. Budakovsky, O.A. Tarasenko, A.Yu. Rybalko, V.V. Yarychkin. Organic polycrystals as the new luminescent system for scintillation and ecology techniques. J. Luminesc. 102, 464 (2003).
  4. S.V. Budakovsky, N.Z. Galunov, B.V. Grinyov, N.L. Karavaeva, J.K. Kim, Y.K. Kim, N.V. Pogorelova, O.A. Tarasenko. Stilbene crystalline powder in polymer base as the new fast neutron detector. Radiat. Meas. 42, 565 (2007).
  5. S.V. Budakovsky, N.Z. Galunov, N.L. Karavaeva, J.K. Kim, Y.K. Kim, O.A. Tarasenko, E.V. Martynenko. New effective organic scintillators for fast neutron and short-range radiation detection. IEEE Trans. Nucl. Sci. 54, 2734 (2007).
  6. N.L. Karavaeva, S.V. Budakovskyi, M.Z. Galunov. Scintillation detector on the basis of organic scintillator. Patent 86136 Ukraine, IPC 51 G01T 1/20, G01T 3/00. No. a200708433; appl. 23.07.07; publ. 25.03.2009, Bull. No. 6 (in Ukrainian).
  7. N.Z. Galunov, B.V. Grinyov, N.L. Karavaeva, J.K. Kim, Y.K. Kim, O.A. Tarasenko, E.V. Martynenko. Development of new composite scintillation materials based on organic crystalline grains. IEEE Trans. Nucl. Sci. 56, 904 (2009).
  8. N.Z. Galunov, B.V. Grinyov, N.L. Karavaeva, Ya.V. Gerasymov, O.Ts. Sidletskiy, O.A. Tarasenko. Gd-bearing composite scintillators as the new thermal neutron detectors. IEEE Trans. Nucl. Sci. 58, 339 (2011).
  9. S.K. Lee, Y.H. Cho, B.H. Kang, W.G. Lee, J.K. Kim, D.G. Kim, N.Z. Galunov, Y.K. Kim. Scintillation properties of composite stilbene crystal for neutron detection. Prog. Nucl. Sci. Technol. 1, 292 (2011).
  10. J. Iwanowska, L. Swiderski, M. Moszynski, T. Szczesniak, P. Sibczynski, N.Z. Galunov, N.L. Karavaeva. Neutron/gamma discrimination properties of composite scintillation detectors. J. Instrument. 6, 1 (2011).
  11. N.L. Karavaeva, O.A. Tarasenko, M.Z. Galunov, Ya.V. Gerasymov. Compositional Scintillator, Patent 94678 Ukraine, IPC51 G01T 1/20, G01T 3/00. No. a201007067; appl. 07.06.10; publ. 25.05.2011, Bull. No. 10 (in Ukrainian).
  12. S.K. Lee, J.B. Son, K.H. Jo, B.H. Kang, G.D. Kim, H. Seo, S.H. Park, N.Z. Galunov, Y.K. Kim. Development of largearea composite stilbene scintillator for fast neutron detection, J. Nucl. Sci. Technol. 51, 37 (2014).
  13. N.Z. Galunov, N.L. Karavaeva, A.V. Krech, I.V. Lazarev, L.G. Levchuk, V.O. Mikhailenko, V.F. Popov, P.V. Sorokin. Peculiarities of radiation resistance of organic scintillators. In Abstracts of the 13th Conference on High Energy Physics, Nuclear Physics and Accelerators (March 16–20, 2015), p. 99 (in Russian).
  14. CMS Collaboration. Technical proposal for the upgrade of the CMS detector through 2020, CERN-LHCC-2011-006, CMS-UG-TP-1, LHCC-P-004 (CERN, Geneva, 2011).
  15. J.B. Birks. The Theory and Practice of Scintillation Counting (Pergamon Press, 1967).
  16. A. Quaranta, S. Carturan, T. Marchi et al. Radiation hardness of polysiloxane rubbers. Nucl. Instrum. Methods B 268, 3155 (2010).
  17. A.Yu. Boyarintsev, N.Z. Galunov, N.L. Karavaeva, A.V. Krech, I.V. Lazarev, L.G. Levchuk, T.A. Nepokupnaya, V.D. Panikarskaya, V.F. Popov, P.V. Sorokin, O.A. Tarasenko. Study of radiation-resistant gel bases for composite detectors. Funct. Mater. 20, 471 (2013).
  18. N.L. Karavaeva, Composite scintillators as new type of a scintillation material. Probl. At. Sci. Technol. Ser. Nucl. Phys. Invest. N 1, 91 (2014).
  19. E. Biagtan, E. Goldberg, J. Harmon, R. Stephens. Effect of gamma radiation dose rate on the light output of commercial polymer scintillators, Nucl. Instrum. Methods B 93, 296 (1994).
  20. N.L. Karavaeva, N.Z. Galunov, E.V. Martynenko, A.V. Kosinova. Combined composite scintillation detector for separate measurements of fast and thermal neutrons, Funct. Mater. 17, 549 (2010).
  21. M. Tanaka, K. Haraa, S. Kim, K. Kondo et al. Applications of cerium-doped gadolinium silicate Gd2SiO5:Ce scintillator to calorimeters in high-radiation environment. Nucl. Instrum. Methods A 404, 283 (1998).
  22. A.Yu. Boyarintsev, N.Z. Galunov, Ia.V. Gerasymov, N.L. Karavaeva, A.V. Krech, L.G. Levchuk, V.F. Popov, O.Ts. Sidletskiy, P.V. Sorokin, O.A. Tarasenko. Radiationresistant composite scintillators based on GSO and GPS grains, Nucl. Instrum. Methods A 841, 124 (2017).
  23. A.Yu. Boyarintsev, N.Z. Galunov, Ia.V. Gerasymov, T.E. Gorbacheva, N.L. Karavaeva, A.V. Krech, L.G. Levchuk, L.A. Litvinov, V.F. Popov, O.Ts. Sidletskiy, P.V. Sorokin, O.A. Tarasenko. Radiation-resistant composite scintillators based on inorganic crystals (GSO:Ce, GPS:Ce and Al2O3 : Ti). Probl. At. Sci. Technol. Ser. Nucl. Phys. Invest. 105, No. 5, 59 (2016).
  24. R.C. Powell, Z. Alshaieb, J.M. Bowen, J.L. Caslavsky. Growth, characterization, and optical spectroscopy of Al2O3 : Ti(3+). J. Appl. Phys. 58, 2331 (1985).
  25. P. Lacovara, L. Esterowitz, M. Kokta. Growth, spectroscopy, and lasing of titanium-doped sapphire, IEEE J. Quant. Electr. QE-21, 1614 (1985).
  26. A. Lupei, V. Lupei, C. Lonescu, H.G. Tang, M.L. Chen, Spectroscopy of Ti3+ : -Al2O3. Opt. Commun. 59, 36 (1986).
  27. R.C. Powell, G.E. Venikouas, Lin Xi, J.K. Tyminski, M.R. Kokta. Thermal effects on the optical spectra of Al2O3 : Ti3+. J. Chem. Phys. 84, 662 (1986).
  28. G. Blasse, J.W.M. Verweij. The luminescence of titanium in sapphire laser material. Mater. Chem. Phys. 26, 131 (1990).
  29. L.E. Bausa, I. Vergara, F. Jaque, J. Garcia-Sole. Ultraviolet laser excited luminescence of Ti-sapphire. J. Phys.: Condens.Matter 2, 9919 (1990).
  30. B. Macalik, L.E. Bausa, J. Garcia-Sole, F. Jaque, J.E. Munoz Santiuste, I. Vergara. Blue emission in Ti-sapphire laser crystals, Appl. Phys. A 55, 144 (1992).
  31. M. Globus, B. Grinyov, J.K. Kim, Inorganic Scintillators for Modern and Traditional Applications (Institute for Single Crystals of the NASU, 2005).
  32. V.B. Mikhailik, H. Kraus, M. Balcerzyk, W. Czarnacki, M. Moszynski, M.S. Mykhaylyk, D. Wahl. Low-temperature spectroscopic and scintillation characterisation of Tidoped Al2O3. Nucl. Instrum. Methods A 546, 523 (2005).
  33. M. Luca, N. Coron, C. Dujardin, H. Kraus, V.B. Mikhailik, M.A. Verdier, P.C.F. Di Stefano. Scintillation and optical spectroscopy of Al2O3:Ti for dark matter searching. Nucl. Instrum. Methods A 606, 545 (2009).
  34. H.H. Kusuma, Z. Ibrahim. UV-Spectroscopy and band structure of Ti:Al2O3. Solid State Sci. Technol. 20, 41 (2012).
  35. C.L. Melcher, J.S. Schweitzer, C.A. Peterson, R.A. Manente, H. Suzuki. Crystal growth and scintillation properties of the rare earth orthosilicates. In Inorganic Scintillators and Their Applications (Delft Univ. Press, 1996), p. 309.
  36. E. Mihokova, M. Nikl, J.A. Mares, A. Beitlerova, A. Vedda, K. Nejezchleb, K. Blazek, C. D'Ambrosio. Luminescence and scintillation properties of YAG : Ce single crystal and optical ceramics, J. Luminesc. 126, 77 (2007).
  37. N.Z. Galunov, Ya.V. Gerasimov, T.E. Gorbacheva, B.V. Grinev, N.L. Karavaeva, A.V. Krech, L.G. Levchuk, E.V. Martynenko, V.F. Popov, O.Ts. Sidletskii, P.V. Sorokin, O.A. Tarasenko, S.U. Khabuseva. Composite scintillators on the basis of inorganic grains (Y2SiO5 : Ce and Y3Al5O12 : Ce). In Abstracts of the 15th Conference on High Energy Physics, Nuclear Physics and Accelerators (Kharkiv, March 21–24, 2017), p. 22 (in Russian).