• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 7, p.633-641
https://doi.org/10.15407/ujpe62.07.0633    Paper

Antia A.D., Ituen E.E.

Theoretical Physics Group, Department of Physics, Faculty of Science, University of Uyo
(Nigeria; e-mail: antiacauchy@yahoo.com, akaninyeneantia@uniuyo.edu.ng)

Nonrelativisitic Treatment of Schrödinger Particles under Inversely Quadratic Hellmann Plus Ring-Shaped Potential

Section: General Problems of Theoretical Physics
Original Author's Text:  English

Abstract: We have solved approximately the Schr¨odinger equation with the inversely quadratic Hell-
mann plus ring-shaped potential in the framework of the Nikiforov–Uvarov method. The energy
eigenvalues and corresponding wave functions of the radial and angular parts are obtained in
terms of Jacobi polynomials. In special cases, our result reduces to the cases of three well-
known potentials such as the Coulomb potential, inversely quadratic Yukawa potential, and
Hartman potential. The energy eigenvalues are evaluated as well. Our numerical results can
be useful for other physical systems.

Key words: Schr¨odinger wave equation, inversely quadratic Hellmann potential, ring-shaped
potential, Nikiforov–Uvarov method, approximation scheme.

References:

  1. S.M. Ikhdair, R. Sever. A perturbative treatment for the energy levels of neutral atom. Int. J. Mod. Phys. A. 21, 6465 (2006).
    https://doi.org/10.1142/S0217751X06034240
  2. A.N. Ikot, L.E. Akpabio. Approximate solution of the Schr¨odinger equation with Rosen–Morse potential including the centrifugal term. Appl. Phys. Res. 2, 202 (2010).
    https://doi.org/10.5539/apr.v2n2p202
  3. B.I. Ita. Bound state solutions of Schr¨odinger equation for Rydberg potential energy function. Nig. J. Phys. 20, 221 (2008).
  4. S.M. Ikhdair, R. Sever. On solutions of the Schr¨odinger equation for some molecular potentials: Wave function Ansatz. Cent. Eur. J. Phys. 6, 697 (2008).
  5. B.I. Ita. Any -state solutions of the Schr¨odinger equation for a more general exponential screened Coulomb potential using Maclaurin's and Nikiforov–Uvarov method. Int. J. Phys. Sci. 2, 141 (2010).
  6. A.D. Antia, A.N. Ikot, L.E. Akpabio. Exact solutions of the Schr¨odinger equation with Manning–Rosen plus ringshaped like potential by Nikiforov–Uvarov method. Eur. J. Sci. Res. 46, 107 (2010).
  7. A.D. Antia, A.N. Ikot, E.E. Ituen, L.E. Akpabio. Analytical solution of Schr¨odinger equation with Eckart potential plus Hulthen potential via Nikiforov–Uvarov method. Pal. J. Math. 1, 104 (2012).
  8. A.N. Ikot. Analytical solutions of Schr¨odinger equation with generalized hyperbolic potential using Nikiforov– Uvarov method. Afr. Rev. Phys. 60026, 211 (2011).
  9. A.N. Ikot, L.E. Akpabio, E.B. Umoren. Exact solution of Schr¨odinger equation with inverted Woods–Saxon and Manning–Rosen potential. J. Sci. Res. 3, 25 (2011).
  10. O.A. Awoga, A.N. Ikot, I.O. Akpan, A.D. Antia. Solution of Schr¨odinger equation with exponential coshine-screened potential Ind. J. Pure and Appl. Phys. 50, 217 (2012).
  11. D. Agboola. Complete analytical solutions of the Mie-type potentials in -dimensions. Acta Phys. Polonica A 120(3), 371 (2011).
    https://doi.org/10.12693/APhysPolA.120.371
  12. D.A. Morales. Supersymmetric improvement of the Pekeris approximation for the rotating Morse potential. Chem. Phys. Lett. 394, 68 (2004).
    https://doi.org/10.1016/j.cplett.2004.06.109
  13. J. Saheghi, B. Pourhassan. Drag force of moving quark at sript = 2 supersgravity. Elect. J. Theor. Phys. 20, 1 (2008).
  14. B.I. Ita, A.I. Ikeuba. Solutions to the Schr¨odinger equation with inversely quadratic Yukawa plus inversely quadratic Hellmann potential using Nikiforov–Uvarov method. J. At. and Mol. Phys. 20, 1 (2013).
  15. A.D. Antia, E.A. Umo, C.C. Umoren, Solutions of nonrelativistic Schr¨odinger equation with Hulthen–Yukawa plus angle dependent potential within the framework of Nikiforov–Uvarov method. J. Theor. Phys. Crypt. 10, 1 (2015).
  16. H. Hellmann. A combined approximation method for the energy calculation in the many-electron problem. Acta Physicochem. URSS 1, 913 (1934).
  17. H. Hellmann, W. Kassatotchkin. Metallic Binding According to the Combined Approximation Procedure. Acta Physicochem. URSS 5, 23 (1936).
    https://doi.org/10.1063/1.1749851
  18. P. Gombas. Die Statistische Theorie des Atoms und ihre Anwendungen (Springer, 1949) [ISBN: 978-3-7091-2100-9].
    https://doi.org/10.1007/978-3-7091-2100-9
  19. J. Callaway, P.S. Laghos. Application of the pseudopotential method to atomic scattering. . Phys. Review 187, 192 (1969).
    https://doi.org/10.1103/PhysRev.187.192
  20. A. Arda, R. Sever. Effective-mass Klein–Gordon–Yukawa problem for bound and scattering states. J. Math. Phys. 52, 092101 (2011).
    https://doi.org/10.1063/1.3641246
  21. C. Grosche. Path integral solutions for deformed PoschlTeller-like and conditional solvable potentials. J. Phys. A: Math. Gen. 38, 2947 (2005).
    https://doi.org/10.1088/0305-4470/38/13/009
  22. S.H. Dong, G.H. Sun, M. Lozada-Cassou. An algebraic approach to the ring-shaped non-spherical oscillator. Phys. Lett. A 328, 299 (2005).
    https://doi.org/10.1016/j.physleta.2004.06.037
  23. B.I. Ita. Solutions of the Schr¨odinger equation with inversely quadratic Hellmann plus Mie-type potential using Nikiforov–Uvarov method. Int. J. Rec. Adv. Phys. 2, 25 (2013).
  24. M. Hamzavi, A.A. Rajabi. Tensor coupling and relativistic spin and pseudospin symmetries with the Hellmann potential. Can. J. Phys. 91, 411 (2013).
    https://doi.org/10.1139/cjp-2012-0542
  25. A.F. Nikiforov, V.B. Uvarov. Special Functions of Mathematical Physics (Birkh¨auser, 1988).
    https://doi.org/10.1007/978-1-4757-1595-8
  26. C. Tezan, R. Sever. A general approach for the exact solution of the Schr¨odinger equation. Int. J. Theor. Phys. 48, 337 (2009).
    https://doi.org/10.1007/s10773-008-9806-y
  27. G. Kocak, O. Bayrak, I. Boztosun. Arbitrary -state solutions of the Hellmann potential. J. Theor. Comp. Chem. 6, 893 (2007).
    https://doi.org/10.1142/S0219633607003313
  28. W. Greiner. Relativistic Quantum Mechanics: Wave Equation (Springer, 2000).
    https://doi.org/10.1007/978-3-662-04275-5
  29. A.D. Antia, I.E. Essien, E.B. Umoren, C.C. Eze. Approximate solutions of the non-relativistic Schr¨odinger equation with inversely quadratic Yukawa plus Mobius square potential via parametric Nikiforov–Uvarov method. Adv. Phys. Theor. Appl. 44, 1 (2015).
  30. M. Hamzavi, H. Hassanabadi, A.A. Rajabi. Exact solutions of Dirac equation with Hartmann potential by Nikiforov–Uvarov method. Int. J. Mod. Phys. E. 19, 2189 (2010).
    https://doi.org/10.1142/S0218301310016594