• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 7, p.625-632
https://doi.org/10.15407/ujpe62.07.0625    Paper

Grygorchak I.I.1, Hryhorchak O.I.2, Ivashchyshyn F.O.1

1 National University “Lviv Polytechnic”
(12, S. Bandera Str., Lviv 79013, Ukraine; e-mail: ivan_gryg@ukr.net, fvash@i.ua)
2 Ivan Franko National University of Lviv
(12, Dragomanov Str., Lviv 79005, Ukraine; e-mail: HrOrest@gmail.com)

Lattice Gas Condensation and its Relation to the Divergence of Virial Expansions in the Powers of Activity

Section: Nanosystems
Original Author's Text:  Ukrainian

Abstract: A new technological approach is proposed for the synthesis of multilayered nanostructures,
which provides them unique properties and extraordinary prospects of practical applications. In
particular, the synthesis of the InSe⟨�-��⟨FeSO4⟩⟩ nanostructure with hierarchical architec-
ture in crossed electric and light-wave felds is shown to result in the abnormally strong positive
magnetoresistance efect with giant magnetoresistance oscillations in a low-frequency interval
of 10−3
–10 Hz. The efciency of applying the synthesized nanohybrid as an active element in
gyrator-free delay nanolines controlled by the magnetic feld and in magnetic-feld sensors that
are supersensitive at room temperatures is substantiated.

Key words: InSe, intercalation, clathrate, cavitand, cavitate, hierarchical structures, impe-
dance spectroscopy, magnetoresistive efect.

References:

  1. J.H. Choy, S.J. Kwon, G.S. Park. High- superconductors in the two-dimensional limit: [(Py-C H2 +1)2HgI4]-Bi2Sr2Ca −1Cu O (= 1 and 2). Science 280, 1589 (1998).
    https://doi.org/10.1126/science.280.5369.1589
  2. J.H. Choy, S.Y. Kwak, J.S. Park, Y.J. Jeong, J. Portier. Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide. J. Am. Chem. Soc. 121, 1399 (1999).
    https://doi.org/10.1021/ja981823f
  3. I.I. Grygorchak, B.O. Seredyuk, K.D. Tovstyuk, B.P. Bakhmatyuk. High Frequency Capacitor Nanostructure Formation by Intercalation (Kluwer, 2002).
    https://doi.org/10.1007/978-94-010-0389-6_45
  4. S.A. Voitovych, I.I. Grygorchak, O.I. Aksimentyeva. Lateral semiconductive and polymer conductive nanolayered structures: Preparation, properties, and application. Mol. Cryst. Liq. Cryst. 497, 55 (2008).
    https://doi.org/10.1080/15421400802458498
  5. J.H. Choy, S.M. Peak, J.M. Oh, E.S. Jang. Intercalative route to heterostructured nanohybrids. Curr. Appl. Phys. 2, 489 (2002).
    https://doi.org/10.1016/S1567-1739(02)00163-3
  6. J.W. Steed, J.L. Atwood. Supramolecular Chemistry (Wiley, 2000).
  7. T.M. Bishchanyuk, R.Ya. Shvets', I.I. Grygorchak, S.I. Budzulyak, L.S. Yablon', I.A. Klymyshyn. Thermodynamic and kinetic features of Li+-intercalation current formation in supramolecular ensembles of hierarchical architecture based on MSM-41 and expanded graphite with carbamide cavitand. Fiz. Khim. Tverd. Tila 14, 190 (2013) (in Ukrainian).
  8. I.I. Grygorchak, F.O. Ivashchyshyn, O.I. Grygorchak, D.V. Matulka. Intercalated nanostructures with hierarchical supramolecular architecture: Obtaining, properties, application Zh. Fiz. Inzh. Poverkhn. 8, 284 (2010) (in Ukrainian).
  9. T.M. Bishchaniuk, I.I. Grygorchak. Colossal magnetocapacitance effect at room temperature. Appl. Phys. Lett. 104, 203104 (2014).
    https://doi.org/10.1063/1.4878403
  10. R.M.A. Lies. Preparation and Crystal Growth of Materials with Layered Structures (Springer, 1977).
  11. R.H. Friend, A.D. Yoffe. Electronic properties of intercalation complexes of the transition metal dichalcogenides. Adv. Phys. 36, 1 (1987).
    https://doi.org/10.1080/00018738700101951
  12. J.-M. Lehn. Supramolecular Chemistry. Concepts and Perspectives (Wiley-VCH, 1995).
    https://doi.org/10.1002/3527607439
  13. T.M. Bishchaniuk, O.V. Balaban, R.Ya. Shvets, I.I. Grygorchak, A.V. Fechan, B.A. Lukiyanets, F.O. Ivashchyshyn. Electronic processes and energy storage in inorganic/organic nanohybrids. Mol. Cryst. Liq. Cryst. 589, 132 (2014).
    https://doi.org/10.1080/15421406.2013.872404
  14. Z.B. Stoinov, B.M. Grafov, B. Savova-Stoinova, and V.V. Elkin, Electrochemical Impedance (Nauka, 1991) (in Russian).
  15. E. Barsoukov, J. R. Macdonald. Impedance Spectroscopy. Theory, Experiment and Application (Wiley, 2005).
    https://doi.org/10.1002/0471716243
  16. M. Pollak, T.H. Geballe. Low-frequency conductivity due to hopping processes in silicon, Phys. Rev. 122, 1742 (1961).
    https://doi.org/10.1103/PhysRev.122.1742
  17. M.A. Ormont. Change of transport mechanism in the transition region from sublinearity to superlinearity in the frequency dependence of the conductivity in disordered semiconductors. Fiz. Tekh. Poluprovodn. 10, 1314 (2015) (in Russian).
  18. M. Okutan, E. Basaran, H.I. Bakanb, F. Yakuphanoglu. AC conductivity and dielectric properties of Co-doped TiO2. Physica B 364, 300 (2005).
    https://doi.org/10.1016/j.physb.2005.04.027
  19. B.I. Shklovskii, A.L. Efros. Zero-phonon ac hopping conductivity of disordered systems. Zh. Eksp. Teor. Fiz. ` 81, 406 (1981) (in Russian).
  20. I.G. Austin, N.F. Mott. Polarons in crystalline and noncrystalline materials. Adv. Phys. 18, 41 (1969).
    https://doi.org/10.1080/00018736900101267
  21. B.P. Zakharchenya, V.L. Korenev. Integrating magnetism into semiconductor electronics. Usp. Fiz. Nauk 175, 629 (2005) (in Russian).
    https://doi.org/10.3367/UFNr.0175.200506d.0629
  22. I. Mora-Sero, J. Bisquert. Implications of the negative capacitance observed at forward bias in nanocomposite and polycrystalline solar cells. Nano Lett. 6, 640 (2006).
    https://doi.org/10.1021/nl052295q
  23. N.A. Penin. Negative capacitance in semiconductor structures. Fiz. Tekh. Poluprovodn. 30, 630 (1996) (in Russian).
  24. J. Bisquert, H. Randriamahazaka, G. Garcia-Belmonte. Inductive behaviour by charge-transfer and relaxation in solid-state electrochemistry. Electrochim. Acta 51, 627 (2005).
    https://doi.org/10.1016/j.electacta.2005.05.025
  25. I.V. Stasyuk, O.V. Velychko. Studies of electronic states in strongly anisotropic layered structures with staged ordering. Zh. Fiz. Dosl. 18, 2002 (2014) (in Ukrainian).
  26. I.V. Stasyuk, O.V. Velychko. Description of intercalated layered structures in the approach of Anderson periodic model. Preprint ICMP-14-07U (Institute of Condensed Matter Physics, Lviv, 2014) (in Ukrainian).
  27. R. Andreichin. High-field polarization, photopolarization and photoelectret properties of high-resistance amorphous semiconductors. J. Electrostat. 1, 217 (1975).
    https://doi.org/10.1016/0304-3886(75)90018-2
  28. J.F. Fowler. X-Ray induced conductivity in insulating materials. Proc. R. Soc. Lond. A 236, 464 (1956).
    https://doi.org/10.1098/rspa.1956.0149
  29. M.H. Weiler, W. Zawadzki, B. Lax. Theory of tunneling, including photon-assisted tunneling, in semiconductors in crossed and parallel electric and magnetic fields. Phys. Rev. 163, 733 (1967).
    https://doi.org/10.1103/PhysRev.163.733
  30. M. Reine, Q.H.F. Vrehen, B. Lax. Photon-assisted magnetotunneling in germanium in parallel and crossed electric and magnetic fields. Phys. Rev. 163, 726 (1967).
    https://doi.org/10.1103/PhysRev.163.726
  31. T.M. Bishchanyuk, I.I. Grygorchak, F.O. Ivashchyshyn. Multilayered semiconductor clathrate-cavitand complexes with a fractal guest system. Fiz. Inzh. Poverkhn. 12, 360 (2014) (in Ukrainian).