• Українська
  • English

<Prev | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 7, p.557-564
https://doi.org/10.15407/ujpe62.07.0557    Paper

Kovalchuk V.A.1,2, Korchin A.Yu.1,2

1 NSC “Kharkiv Institute of Physics and Technology”, NAS of Ukraine
(Akademichna, 1, 61108 Kharkiv, Ukraine)
2 V.N. Karazin Kharkiv National University
(Svobody Sq., 4, 61022 Kharkiv, Ukraine; e-mail: koval@kipt.kharkov.ua)

Higgs-Boson Decay to Lepton Pair and Photon and Possible Non-Hermiticity of the Yukawa Interaction

Section: Fields and Elementary Particles
Original Author's Text: English

Abstract: The production of lepton pairs in the Higgs-boson decay is studied. The emphasis is put on the structure of the Higgs-boson interaction with fermions. This interaction is chosen
as a mixture of the scalar and pseudo-scalar couplings, and, in addition, it is supposed to
be non-Hermitian. We study predictions of this model for the observables in the
decay for +−, +−, and +− pairs. The diferential decay width and lepton forward-
backward asymmetry are calculated as functions of the dilepton invariant mass for several
sets of coupling constants. The infuence of the non-Hermitian interaction on the
forward-backward asymmetry is studied, and the large infuence of a possible non-Hermiticity
of the Higgs interaction with the top quarks on the forward-backward asymmetry for +− and
+− pairs is stressed.

Key words:  Higgs-boson, non-Hermitian interaction, decay of Higgs boson.

References:

  1. G. Aad et al. (ATLAS Collaboration), Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716, 1 (2012).
    https://doi.org/10.1016/j.physletb.2012.08.020
  2. S. Chatrchyan et al. (CMS Collaboration), Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716, 30 (2012).
    https://doi.org/10.1016/j.physletb.2012.08.021
  3. V. Khachatryan et al. (CMS Collaboration). Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV. Eur. Phys. J. C 75, 212 (2015).
    https://doi.org/10.1140/epjc/s10052-015-3351-7
  4. G. Aad et al. (ATLAS Collaboration). Measurements of the Higgs boson production and decay rates and coupling strengths using collision data at √ = 7 and 8 TeV in the ATLAS experiment. Eur. Phys. J. C 76, 6 (2016).
    https://doi.org/10.1140/epjc/s10052-015-3769-y
  5. S. Chatrchyan et al. (CMS Collaboration). Study of the mass and spin-parity of the Higgs boson candidate via its decays to boson pairs. Phys. Rev. Lett. 110, 081803 (2013).
    https://doi.org/10.1103/PhysRevLett.110.081803
  6. G. Aad et al. (ATLAS Collaboration). Evidence for the spin-0 nature of the Higgs boson using ATLAS data. Phys. Lett. B 726, 120 (2013).
    https://doi.org/10.1016/j.physletb.2013.08.026
  7. V. Khachatryan et al. (CMS Collaboration). Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV. Phys. Rev. D 92, 012004 (2015).
    https://doi.org/10.1103/PhysRevD.92.012004
  8. A.Yu. Korchin, V.A. Kovalchuk. Decay of the Higgs boson to − + and non-Hermiticity of the Yukawa interaction. Phys. Rev. D 94, no. 7, 076003 (2016).
    https://doi.org/10.1103/PhysRevD.94.076003
  9. C. Patrignani et al. (Particle Data Group). Review of Particle Physics. Chin. Phys. C 40, 100001 (2016).
    https://doi.org/10.1088/1674-1137/40/10/100001
  10. A.Yu. Korchin, V.A. Kovalchuk. Polarization effects in the Higgs boson decay to and test of and symmetries. Phys. Rev. D 88, 036009 (2013).
    https://doi.org/10.1103/PhysRevD.88.036009
  11. A.Yu. Korchin, V.A. Kovalchuk. Higgs boson decay to and test of CP and CPT symmetries. Acta Phys. Polon. B 44, No. 11, 2121 (2013).
    https://doi.org/10.5506/APhysPolB.44.2121
  12. A.Yu. Korchin, V.A. Kovalchuk. Angular distribution and forward-backward asymmetry of the Higgs boson decay to photon and lepton pair. Eur. Phys. J. C 74, 3141 (2014).
    https://doi.org/10.1140/epjc/s10052-014-3141-7
  13. R.F. Streater, A.S. Wightman. PCT, Spin and Statistics and All That (Benjamin, 1964).
  14. S. Heinemeyer, C. Mariotti, G. Passarino, R. Tanaka (Eds.). LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections:3. Higgs Properties, arXiv:1307.1347v1 [hep-ph].
  15. A. Abbasabadi, D. Bowser-Chao, D.A. Dicus, W.W. Repko. Higgs photon associated production at ¯ colliders. Phys. Rev. D 52, 3919 (1995).
    https://doi.org/10.1103/PhysRevD.52.3919
  16. A. Abbasabadi, D. Bowser-Chao, D.A. Dicus, W.W. Repko. Radiative Higgs boson decays H → fermion antifermion gamma. Phys. Rev. D 55, 5647 (1997).
    https://doi.org/10.1103/PhysRevD.55.5647
  17. G.T. Bodwin, F. Petriello, S. Stoynev, M. Velasco. Higgs boson decays to quarkonia and the ¯ coupling. Phys. Rev. D 88, No. 5, 053003 (2013).
    https://doi.org/10.1103/PhysRevD.88.053003
  18. A.L. Kagan, G. Perez, F. Petriello, Y. Soreq, S. Stoynev, J. Zupan. An exclusive window onto Higgs Yukawa couplings. Phys. Rev. Lett. 114, No. 10, 101802 (2015).
    https://doi.org/10.1103/PhysRevLett.114.101802
  19. D.-N. Gao. A note on Higgs decays into boson and / (ϒ). Phys. Lett. B 737, 366 (2014).
    https://doi.org/10.1016/j.physletb.2014.09.019
  20. B. Bhattacharya, A. Datta, D. London. Probing new physics in Higgs couplings to fermions using an angular analysis. Phys. Lett. B 736, 421 (2014).
    https://doi.org/10.1016/j.physletb.2014.07.065
  21. A. Kobakhidze, N. Liu, L. Wu, J. Yue. Implications of CPviolating top-Higgs couplings at LHC and Higgs factories. Phys. Rev. D 95, No. 1, 015016 (2017).
    https://doi.org/10.1103/PhysRevD.95.015016
  22. S. Dittmaier, C. Mariotti, G. Passarino, R. Tanaka (Eds.). LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv: 1101.0593v3 [hep-ph]
  23. M. Spira. QCD Effects in Higgs physics. Fortsch. Phys. 46, 203 (1998).
    https://doi.org/10.1002/(SICI)1521-3978(199804)46:33.0.CO;2-4