• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 6, p.533-538
https://doi.org/10.15407/ujpe62.06.0533    Paper

Ushcats M.V.1,2, Bulavin L.A.1, Sysoev V.M.1, Ushcats S.Yu.2

1 Taras Shevchenko National University of Kyiv
(2, Prosp. Academician Glushkov, Kyiv 03680, Ukraine)
2 Admiral Makarov National University of Shipbuilding
(9, Heroes of Ukraine Ave., Mykolaiv 54025, Ukraine; e-mail: mykhailo.ushcats@nuos.edu.ua)

Lattice Gas Condensation and its Relation to the Divergence of Virial Expansions in the Powers of Activity

Section: General Problems of Theoretical Physics
Original Author's Text:  Ukrainian

Abstract: An efficient algorithm for the calculation of high-order reducible cluster integrals on the basis of irreducible integrals (virial coefficients) has been proposed. The algorithm is applied to study the behavior of the well-known virial expansions of the pressure and concentration in power series of activity up to very high-order terms, as well as recently derived symmetric power expansions in the reciprocal activity, in the framework of a specific lattice gas model. Our results are consistent with those obtained in other modern studies of the partition function in terms of the concentration. They disclose the physical meaning of the divergence that the mentioned expansions demonstrate in the condensation region.

Key words: lattice gas, virial coefficients, reducible cluster integrals, activity, equation of state, condensation.

References:

  1. M.V. Ushcats. High-density equation of state for a lattice gas. Phys. Rev. E 91, 052144 (2015).
    https://doi.org/10.1103/PhysRevE.91.052144
  2. M.V. Ushcats, L.A. Bulavin, V.M. Sysoev, S.J. Ushcats. Virial and high-density expansions for the Lee–Yang lattice gas. Phys. Rev. E 94, 012143 (2016).
    https://doi.org/10.1103/PhysRevE.94.012143
  3. M.V. Ushcats, L.A. Bulavin, V.M. Sysoev, V.Y. Bardik, A.N. Alekseev. Statistical theory of condensation – Advances and challenges. J. Mol. Liq. 224, 694 (2016).
    https://doi.org/10.1016/j.molliq.2016.09.100
  4. R. Balescu. Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, 1975) [ISBN: 0471046000].
  5. J.E. Mayer, M.G. Mayer. Statistical Mechanics (Wiley, 1977)
  6. C. Feng, A.J. Schultz, V. Chaudhary, D.A. Kofke. Eighth to sixteenth virial coefficients of the Lennard-Jones model. J. Chem. Phys. 143, 044504 (2015).
    https://doi.org/10.1063/1.4927339
  7. M.V. Ushcats. Modified Lennard-Jones model: Virial coefficients to the 7th order. J. Chem. Phys. 140, 234309 (2014).
    https://doi.org/10.1063/1.4882896
  8. M.V. Ushcats. Communication: Low-temperature approximation of the virial series for the Lennard-Jones and modified Lennard-Jones models. J. Chem. Phys. 141, 101103 (2014).
    https://doi.org/10.1063/1.4895126
  9. A.J. Schultz, D.A. Kofke. Vapor-phase metastability and condensation via the virial equation of state with extrapolated coefficients. Fluid Phase Equilibria 409, 12 (2016).
    https://doi.org/10.1016/j.fluid.2015.09.016
  10. M.V. Ushcats. Virial coefficients of modified LennardJones potential. Ukr. Fiz. Zh. 59, 173 (2014) (in Ukrainian).
  11. M.V. Ushcats. Modification of the Mayer sampling method for the calculation of high-order virial coefficients. Ukr. Fiz. Zh. 59, 737 (2014) (in Ukrainian).
  12. M.V. Ushcats, S.J. Ushcats, A.A. Mochalov. Virial coefficients of Morse potential. Ukr. J. Phys. 61, 160 (2016).
    https://doi.org/10.15407/ujpe61.02.0160
  13. M.V. Ushcats, A.A. Gaisha. The fifth virial coefficient for the Sutherland, Morse, and Lennard-Jones potentials. Visn. Kharkiv Nat. Univ. 18, 67 (2013) (in Russian).
  14. M.V. Ushcats, K.D. Evfimko. The sixth virial coefficient for the modified Lennard-Jones potential, Visn. Odessa Nat. Univ. 19 (1), 37 (2014).
  15. M.V. Ushcats. Equation of state beyond the radius of convergence of the virial expansion. Phys. Rev. Lett. 109, 040601 (2012).
    https://doi.org/10.1103/PhysRevLett.109.040601
  16. M.V. Ushcats. ???????????. Visn. Kharkiv Nat. Univ. 17, 6 (2012).
  17. M.V. Ushcats. Adequacy of the virial equation of state and cluster expansion. Phys. Rev. E 87, 042111 (2013).
    https://doi.org/10.1103/PhysRevE.87.042111
  18. M.V. Ushcats. Condensation of the Lennard-Jones fluid on the basis of the Gibbs single-phase approach. J. Chem. Phys. 138, 094309 (2013).
    https://doi.org/10.1063/1.4793407
  19. J. Groeneveld. Two theorems on classical many-particle systems. Phys. Lett. 3, 50 (1962).
    https://doi.org/10.1016/0031-9163(62)90198-1
  20. O. Penrose. Convergence of fugacity expansions for fluids and lattice gases. J. Math. Phys. 4, 1312 (1963).
    https://doi.org/10.1063/1.1703906
  21. E. Donoghue, J.H. Gibbs. Condensation theory for finite, closed systems. J. Chem. Phys. 74, 2975 (1981).
    https://doi.org/10.1063/1.441420
  22. T.D. Lee, C.N. Yang. Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev. 87, 410 (1952).
    https://doi.org/10.1103/PhysRev.87.410