• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 5, p.432-440
https://doi.org/10.15407/ujpe62.05.0432    Paper

Yukhymchuk V.O.1, Valakh M.Ya.1, Hreshchuk O.M.1, Havrylyuk Ye.O.1, Yanchuk I.B.1, Yefanov A.V.1,2, Arif R.N.3, Rozhin A.G.3, Skoryk M.A.2

1 V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(41, Prosp. Nauky, Kyiv 03028, Ukraine; e-mail: hreshchuk@gmail.com)
2 Nanomedtech LLC
(68, Antonovych Str., Kyiv 03680, Ukraine)
3 Electronic Engineering Division, School of Engineering & Applied Science
(Aston University, Aston Triangle, Birmingham, B4 7ET, UK)

Properties of Graphene Flakes Obtained by Treating Graphite with Ultrasound

Section: Solid Matter
Original Author's Text: English

Abstract: A possibility to obtain graphene and graphene layers with the help of the ultrasound (US) treatment of pyrolytic graphite in an N-methyl pyrrolidone (NMP) solution has been demonstrated. Raman spectroscopy is confirmed to be an effective method for monitoring the graphite transformation into graphene. By varying the time of the ultrasonic treatment of pyrolytic graphite in the NMP solution, optimum regimes for the fabrication of graphene flakes with various numbers of layers are determined. In particular, the US treatment for 5 h is shown to be sufficient for producing a colloidal solution of graphene flakes, most of which are singlelayered. It is shown that the longer US treatment results in larger intensities of Raman bands D and D', which testifies to a larger number of defects in the graphene layers. The average distances between defects are estimated for various times of US treatment. The influence of vacancy and edge defects on the intensity band ratio ID/ID' is analyzed. Vacancies are found to be the prevailing type of defects in the graphene flakes.

Key words: graphene, Raman spectroscopy, ultrasound treatment, vacancy and edge defects, scanning electron microscopy.

References:

  1. K.S. Novoselov, V.I. Fal'ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim. A roadmap for graphene. Nature 490, 192 (2012).
    https://doi.org/10.1038/nature11458
  2. X. Yang, C. Cheng, D. Sichao, Y. Jianyi, Y. Bin, L. Jack, Y. Wenyan, L. Erping, D. Shurong, Y. Peide, D. Xiangfeng. Contacts between two- and three-dimensional materials: Properties of Graphene Flakes Ohmic,Schottky, and heterojunctions. ACS Nano 10, 4895 (2016).
    https://doi.org/10.1021/acsnano.6b01842
  3. S. Chen, S. Zhimei, L. Feng. Strain engineering of graphene: A review. Nanoscale 8, 3207 (2016).
    https://doi.org/10.1039/C5NR07755A
  4. A.N. Morozovska, E.A. Eliseev, M.V. Strikha. Ballistic conductivity of graphene channel with junction on ferroelectric domain wall. Appl. Phys. Lett. 108, 232902 (2016).
    https://doi.org/10.1063/1.4953226
  5. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Electric field effect in atomically thin carbon films. Science 306, 666 (2004).
    https://doi.org/10.1126/science.1102896
  6. A.A. Tahir, H. Ullah, P. Sudhagar, M.A.M. Teridi, A. Devadoss, S. Sundaram. The application of graphene and its derivatives to energy conversion, storage, and environmental and biosensing devices. Chem. Rec. 16, 1591 (2016).
    https://doi.org/10.1002/tcr.201500279
  7. Wen Yang, Mei Ni, Xin Ren, Yafen Tian, Ning Li, Yuefeng Su, Xiaoling Zhang. Graphene in supercapacitor applications. Curr. Opin. Coll. Interface Sci. 20, 416 (2015).
    https://doi.org/10.1016/j.cocis.2015.10.009
  8. A. Bablich, S. Kataria, M.C. Lemme. Graphene and twodimensional materials for optoelectronic applications. Electronics 5, 13 (2016).
    https://doi.org/10.3390/electronics5010013
  9. Z. Chengzhou, D. Dan, L. Yuehe. Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications. Biosens. Bioelectron. 89, 43 (2017).
    https://doi.org/10.1016/j.bios.2016.06.045
  10. K. Leilei, C. Jiayu, Z. Hongtao, X. Ping, S. Mengtao. Recent progress in the applications of graphene in surfaceenhanced Raman scattering and plasmon-induced catalytic reactions. Mater. Chem. C 3, 9024 (2015).
    https://doi.org/10.1039/C5TC01759A
  11. B.F. Machado, P. Serp. Graphene-based materials for catalysis. Catalys. Sci. Technol. 2, 54 (2012).
    https://doi.org/10.1039/C1CY00361E
  12. E. Sadeghinezhad, M. Mehrali, R. Saidur, M. Mehrali, S.T. Latibari, A.R. Akhiani, H.S.C. Metselaar. A comprehensive review on graphene nanofluids: recent research, development and applications. Ener. Conv. Manag. 111, 466 (2016).
    https://doi.org/10.1016/j.enconman.2016.01.004
  13. F. Schwierz. Graphene transistors. Nature Nanotech. 5, 487 (2010).
    https://doi.org/10.1038/nnano.2010.89
  14. A. Das, B. Chakraborty, A.K. Sood. Raman spectroscopy of graphene on different substrates and influence of defects. Bull. Mater. Sci. 31, 579 (2008).
    https://doi.org/10.1007/s12034-008-0090-5
  15. A. Guermoune, T. Chari, F. Popescu, S.S. Sabri, J. Guillemette, H.S. Skulason, T. Szkopek, M. Siaj. Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon 49, 4204 (2011).
    https://doi.org/10.1016/j.carbon.2011.05.054
  16. N. Camara, J.-R. Huntzinger, G. Rius, A. Tiberj, N. Mestres, F. P’erez-Murano, P. Godignon, J. Camassel. Anisotropic growth of long isolated graphene ribbons on the C face of graphite-capped 6H-SiC. Phys. Rev. B 80, 125410 (2009).
    https://doi.org/10.1103/PhysRevB.80.125410
  17. M. Valakh, V. Kiselov, V. Yukhymchuk, V. Dzhagan, A. Efanov, M. Tryus, A. Belyaev, D.R.T. Zahn. Freestanding graphene monolayers in carbon-based composite obtained from SiC: Raman diagnostics. Phys. Status Solidi A 211, 1674 (2014).
    https://doi.org/10.1002/pssa.201431116
  18. K.R. Paton et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature Mater. 13, 624 (2014).
    https://doi.org/10.1038/nmat3944
  19. A.C. Ferrari, J. Robertson. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000).
    https://doi.org/10.1103/PhysRevB.61.14095
  20. L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus. Raman spectroscopy in graphene. Phys. Rep. 473, 51 (2009).
    https://doi.org/10.1016/j.physrep.2009.02.003
  21. F. Tuinstra, J.L. Koenig. Raman spectrum of graphite. J. Chem. Phys. 53,1126 (1970).
    https://doi.org/10.1063/1.1674108
  22. S. Piscanec, M. Lazzeri, F. Mauri, A.C. Ferrari, J. Robertson. Kohn anomalies and electron-phonon interaction in graphite. Phys. Rev. Lett. 93, 185503 (2004).
    https://doi.org/10.1103/PhysRevLett.93.185503
  23. R. Beams, L.G. Cancado, L. Novotny. Raman characterization of defects and dopants in graphene. J. Phys.: Condens. Matter 27, 083002 (2015).
    https://doi.org/10.1088/0953-8984/27/8/083002
  24. E.H. Martins Ferreira, M.V.O. Moutinho, F. Stavale, M.M. Lucchese, R.B. Capaz, C.A. Achete, A. Jorio. Evolution of the Raman spectra from single-, few-, and manylayer graphene with increasing disorder. Phys. Rev. B 82, 125429 (2010).
    https://doi.org/10.1103/PhysRevB.82.125429
  25. C. Casiraghi, S. Pisana, K.S. Novoselov, A.K. Geim, A.C. Ferrari. Raman fingerprint of charged impurities in graphene. Appl. Phys. Lett. 91, 233108 (2007).
    https://doi.org/10.1063/1.2818692
  26. M.M. Lucchese, F. Stavale, E.H. Martins Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete, A. Jorio. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592 (2010).
    https://doi.org/10.1016/j.carbon.2009.12.057
  27. L.G. Cancado, A. Jorio, E. H. Martins Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190 (2011).
    https://doi.org/10.1021/nl201432g
  28. L.G. Cancado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki et al. General equation for the determination of the crystallite size of nanographite by Raman spectroscopy. Appl. Phys. Lett. 88, 163106 (2006).
    https://doi.org/10.1063/1.2196057
  29. L.G. Cancado, M.A. Pimenta, B.R.A. Neves, M.S.S. Dantas, A. Jorio. Influence of the atomic structure on the Raman spectra of graphite edges. Phys. Rev. Lett. 93, 247401 (2004).
    https://doi.org/10.1103/PhysRevLett.93.247401
  30. C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K.S. Novoselov, D.M. Basko, A.C. Ferrari. Raman spectroscopy of graphene edges. Nano Lett. 9, 1433 (2009).
    https://doi.org/10.1021/nl8032697
  31. A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K.S. Novoselov, C. Casiraghi. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 12, 3925 (2012).
    https://doi.org/10.1021/nl300901a
  32. F. Banhart, J. Kotakoski, A.V. Krasheninnikov. Structural defects in graphene. ACS Nano 5, 26(2011).
    https://doi.org/10.1021/nn102598m
  33. S.P. Lonkar, A.A. Abdala. Applications of graphene in catalysis. Thermodyn. Catalys. 5 (2), 1 (2014).