• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 5, p.422-431
https://doi.org/10.15407/ujpe62.05.0422    Paper

Vishwakarma R.1,2

1 Advance Thin Film Laboratory, Department of Physics & Electronics, Dr. Ram Manohar Lohia Avadh University (Faizabad (UP) India) 2 RPS Degree College (Mahendergarh, (MDU Rohtak) Haryana; e-mail: rhl.jaunpur@gmail.com)

Thickness-Dependent Structural, Electrical, and Optical Properties of ZnS Thin Films Deposited by Thermal Evaporation

Section: Solid Matter
Original Author's Text: English

Abstract: Zinc sulfide (ZnS) thin films are deposited onto an ultrasonically clean glass substrate, by using the thermal evaporation technique at room temperature. The film thickness was varied in the range from 400 nm to 1300 nm. The X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive analysis of X-rays (EDAX) are used to characterize the structural properties of films. The electrical and optical properties of films are characterized with a dc two-point probe, the Hall effect, and ultra-violet visible absorption spectra. The XRD spectra indicate that the thin films have polycrystalline nature and possess the cubic structure with (111) preferential orientation. The diffraction patterns are sharpen with increase in the film thickness. Scanning electron microscope data disclose that the films have nanograins approximately 97.89 nm in size. A reduction in the resistivity shows that the films are semiconductors in nature. For a film thickness of 1200 nm, the maximum mobility is 26.03 × 101 cm2/Vs, minimum resistivity is 0.08 × 106 (Ohm·cm), and band gap is 3.26 eV. The film thickness has been optimized on the basis of the observed properties.

Key words: ZnS films, grain size, dislocation density, electrical resistivity, band gap, activation energy, electron mobility.


  1. L. Li-ping, Q. Xiao-qing, L. Guang-she. Correlation between size-induced lattice variations and yellow emission shift in ZnO nanostructures. Applied Physics Letters 87, 124101 (2005).
  2. H.M. Schmidt, H. Weller. Synthesis of ZnS nano particles by solid liquid chemicals method. Chemical Physics Letters 129, 615 (1986).
  3. S.Y. Yuan, Y. Juan, Q.K. Qiang. Synthesis of ZnS nanoparticales by chemical reaction with ZnO and Na2S under ultrasonic. Trans. Nonferrous Met. Soc. China 20, 211 (2010).
  4. C. Xing-wang, L. Xiang, Z. Fei-fei, Y. Zhou, L. Xue, L. Peng-ting. Fabrication and photoluminescence study on ZnO nanostructured particles. J. of Aeronautical Materials 29, 92 (2009).
  5. Y.Y. Chen, J.G. Duh, B.S. Chiou, C.G. Peng. Luminescent mechanism of ZnS:Cu:Cl and ZnS:Cu:Al phosphors. Thin Solid Films 392, 50 (2001).
  6. K. Benyahia, A. Benhaya, M.S. Aida. ZnS thin films deposited by thermal evaporation for photovoltaic applications. J. of Semiconductors 36, 103001 (2015).
  7. H. Cho, C. Yun, J.W. Park, S. Yoo. Highly flexible organic light emitting diodes based on ZnS/Ag/Wo3 multilayers transparent electrodes. Organic Electronics 10, 1163 (2009).
  8. X. Liu, X. Cai, J. Mao, C. Jin. ZnS/Ag/ZnS nano multilayer films for transparent electrodes in flat display application. Applied Surface Science 183, 103 (2001).
  9. F. Karuna, Y.H. Ng, Y. Tang, R. Amal, N. Valanoor, J. Hart. ZnS thin film for visible light active photoelectrode: Effect of film morphology and crystal structure. Cryst. Growth Des. 16, 2461 (2016).
  10. V. Dimitrova, J. Tate. Synthesis and characterization of some ZnS-based thin film phosphors for electroluminescent device applications. Thin Solid Films 365, 134 (2000).
  11. E. Katz, I. Willner. Nanotechnology Concept (Wiley-VCH, 2004), Chapter 14, 200.
  12. A. Nitta, K. Tanakab, Y. Maekawab, M. Kusabirakib, M. Aozasa. Effects of gas impurities in the sputtering environment on the stoichiometry and crystallinity of ZnS:Mn electroluminescent-device active layers. Thin Solid Films 384, 261 (2001).
  13. S. Yano, R. Schroeder, B. Ullrich, H. Sakai. Absorption and photocurrent properties of thin ZnS films formed by pulsed-laser deposition on quartz. Thin Solid Films 423, 273 (2003).
  14. Q.J. Feng, D.Z. Shen, J.Y. Zhang, H.W. Liang, D.X. Zhao, Y.M. Lua, X.W. Fan. Highly aligned ZnS nanorods grown by plasma-assisted metalorganic chemical vapor deposition. J. Crystal Growth 285, 561 (2005).
  15. Z. Zhang, D.Z. Shen, J. Y. Zhang, C.X. Shan, Y.M. Lu, Y.C. Liu, B.H. Li, D.X. Zhao, B. Yao, X.W. Fan. The growth of single cubic phase ZnS thin films on silica glass by plasma-assisted metalorganic chemical vapor deposition. Thin Solid Films 513, 114 (2006).
  16. M. Gunasekaran, R. Gopalakrishnan, P. Ramasamy. Deposition of ZnS thin films by photochemical deposition technique. Mater. Lett. 58, 67 (2003).
  17. X.T. Zhang, Y.C. Liu, L.G. Zhang, J.Y. Zhang, Y.M. Lu, D.Z. Shen, W.X.u, G.Z. Zhong, X.W. Fan, Z.G. Kong. Photoluminescence and optically pumped ultraviolet lasing from nanocrystalline ZnO thin films prepared by thermal oxidation of high-quality ZnS thin films. Chin. Phys. Lett. 19, 127 (2002).
  18. S. Wang, X. Fu, G. Xia, J. Wang, J. Shao, Z. Fan. Structure and optical properties of ZnS thin films grown by glancing angle deposition. Appl. Surf. Sci. 252, 8734 (2006).
  19. N. Fathy, R. Kobayashi. M. Ichimura. Preparation of ZnS thin films by the pulsed electrochemical deposition. Mater. Sci. Eng. B 107, 271 (2004).
  20. P. Roy, J.R. Ota, S.K. Srivastava. Crystalline ZnS thin films by chemical bath deposition method and its characterization. Thin Solid Films 515, 1912 (2006).
  21. S.P. Patel, D. Kanjilal, L. Kumar. Nano patterning of ZnS thin surfaces by keV ion beam irradiation. Surface & Coatings Technology 206, 487 (2011).
  22. V. Ramasamy, K. Praba, G. Murugadoss. Study of optical and thermal properties in nickel doped ZnS nanoparticles using surfactants. Superlattices and Microstructures 51, 699 (2012).
  23. A.U. Ubale, D.K. Kulkarni. Preparation and study of thickness dependent electrical characteristics of zinc sulfide thin films. Bull. Mater. Sci. 28, 43 (2005).
  24. A. Cottrell. An Intorduction to Metallurgy (Hodder Arnold, 1975), p. 173–178 [ISBN: 0713125101].
  25. F. Haque, K.S. Rahman, M.A. Islam, M.J. Rasid, M.M. Alam, Z.A. Alothman, K. Soplan, N. Amin. Growth optimization of ZnS thin films by R.F. Magnetron sputtering as prospective buffer layer in thin film solar cell. Chalcogenide Letters 11, 189 (2014).
  26. J.P. Borah, J. Barman, K.C. Sarma. Structural and optical properties of ZnS nanoparticles. Chalcogenide Letters 5, 201 (2008).
  27. R. Chauhan, A. Kumar, R.P. Chaudhary. Characterization of chemically synthesized Mn doped ZnS nanoparticals. Chalcogenide Letters 9, 151 (2012).
  28. S.W. Lu, B.I. Lee, Z.L. Wang, W. Tong, B.K. Wagner, W. Park, C.J. Summers. Synthesis and photoluminescence enhancement of Mn doped ZnS nanocrystals. J. of Luminensence 92, 73 (2001).
  29. S.R. Vishwakarma, A. Kumar, R.S.N. Tripathi, Rahul S. Das. Fabrication and characterization of –InSb thin film of different thicknesses. Indian J. of Pure & Applied Physics 51, 260 (2013).
  30. Y.Y. Bacherikov, S.Y. Zelensky, A.G. Zhuk, N.A. Semenenko, O.S. Krylova. Luminescent properties of finedispersed ZnS:Cu prepared using self-propagating hightemperature synthesis. Semiconductor Physics, Quantum Electronics & Optoelectronics 17, 374 (2014).
  31. F. Ozutok, K. Erturk, V. Bilgin. Growth, electrical and optical properties of ZnS:Mn thin films. Acta Physica Polonica A 121, 221 (2012).
  32. M.S. Shinde, P.B. Ahirrao, I.J. Patil, R.S. Patil. Studies on nanocrystalline ZnS thin films prepared by modified chemical bath deposition method. Indian J. Pure & Appl. Phys. 49, 765 (2011).
  33. P. Kumar, A. Kumar, P.N. Dixit, T.P. Sharma. Optical, structural and electrical properties of zinc sulfide vacuum evaporated thin films. Indian J. Pure & Appl. Phys 44, 690 (2006).
  34. H.R. Dizaji, A.J. Zavaraki, M.H. Ehsani. Effect of thickness on the structural and optical properties of ZnS thin films prepared by flash evaporation technique equipped with modified feeder. Chalocogenide Letters 8, 231 (2011).
  35. D.H. Hwang, J.H. Ahn, K.N. Hui, Y.G. Son. Structural and optical properties of ZnS thin films deposited by RF magnetron sputtering. Nanoscale Research Letters 7, 26 (2012).