• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 5, p.413-421
https://doi.org/10.15407/ujpe62.05.0413    Paper

Mazur Yu.P., Ostapenko R.V., Semen’ko M.P.

Taras Shevchenko National University of Kyiv, Faculty of Physics
(64/13, Volodymyrs’ka Str., Kyiv 01601, Ukraine; e-mail: smp@univ.kiev.ua)

Influence of a Cold Plastic Deformation on the Electrical Resistivity of CrMnFeCoNi High-Entropy Alloy

Section: Solid Matter
Original Author's Text:  English

Abstract: The influence of a cold rolling deformation on the electrical transport properties of CrMnFeCoNi high-entropy alloy (HEA) has been studied. It is shown that the growth of the strain at rolling gives rise to a decrease of the alloy electrical resistivity and an increase of the temperature coefficient of resistance . The X-ray diffraction study did not reveal any phase changes at that. Such dependences of and on differ from the behavior of those parameters in the majority of ordinary metal alloys. The temperature dependence of the electrical resistance of deformed samples at their heating is found to have an abnormal S-like shape. Using the positions of such S-anomalies obtained at different heating rates, the activation energy Ea of the process responsible for the appearance of this anomaly is determined with the help of the Kissinger method. The form of the dependence (T) and the value of Ea give us ground to connect the specific features in the behavior of in deformed specimens with the existence of a “K-state” in the examined HEA, which emerges in some deformed alloys based on transition metals. Possible thermodynamic reasons for the appearance of this state have been discussed.

Key words: high-entropy alloy, electrical resistivity, K-state, plastic deformation, structure.

References:

  1. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).
    https://doi.org/10.1002/adem.200300567
  2. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu. Microstructures and properties of highentropy alloys. Prog. Mater. Sci. 61, 1 (2014).
    https://doi.org/10.1016/j.pmatsci.2013.10.001
  3. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw. Refractory high-entropy alloys. Intermetallics 18, 1758 (2010).
    https://doi.org/10.1016/j.intermet.2010.05.014
  4. C.Y. Hsu, T.S. Sheu, J.W. Yeh, S.K. Chen. Effect of iron content on wear behaviour of AlCoCrFe Mo0.5Ni highentropy alloys. Wear 268, 653 (2010).
    https://doi.org/10.1016/j.wear.2009.10.013
  5. Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen. Solid solution alloy of AlCoCrFeNiTi with excellent room-temperature mechanical properties. Appl. Phys. Lett. 90, 181904 (2007).
    https://doi.org/10.1063/1.2734517
  6. Y.-F. Kao, T.D. Lee, S.K. Chen, Y.S. Chang. Electrochemical passive properties of Al CoCrFeNi (= 0, 0.25,0.50, 1.00) alloys in sulfuric acids. Corros. Sci. 52, 1026 (2010).
    https://doi.org/10.1016/j.corsci.2009.11.028
  7. M.-H. Tsai, J.W. Yeh, J.Y. Gan. Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon. Thin Solid Films 516, 5527 (2008).
    https://doi.org/10.1016/j.tsf.2007.07.109
  8. M.S. Lucas, L. Mauger, J.A. Munoz, Y. Xiao, A.O. Sheets, S.L. Semiatin, J. Horwath, Z. Turgut. Magnetic and vibrational properties of high-entropy alloys. J. Appl. Phys. 109, 07E307 (2011).
  9. K. Zhang, Z. Fu. Effects of annealing treatment on properties of CoCrFeNiTiAl multi-component alloys. Intermetallics 28, 34(2012).
    https://doi.org/10.1016/j.intermet.2012.03.059
  10. S.-K. Chen, Y.-F. Kao. Near-constant resistivity in 4.2-360 K in a B2 Al2.08CoCrFeNi. AIP Adv. 2, 012111 (2012).
    https://doi.org/10.1063/1.3679072
  11. M.-H. Tsai. Physical properties of high entropy alloys. Entropy 15, 5338 (2013).
    https://doi.org/10.3390/e15125338
  12. H.P. Chou, Y.S. Chang, S.K. Chen, J.W. Yeh. Microstructure, thermophysical and electrical properties in Al CoCrFeNi (0 ≤ ≤ 2) high-entropy alloy. Mater. Sci. Eng. 163, 184 (2009).
    https://doi.org/10.1016/j.mseb.2009.05.024
  13. Y.-F. Kao, S.-K. Chen, T.-J. Chen, P.-C. Chu, J.-W. Yeh, S.-J. Lin. Electrical, magnetic, and Hall properties of Al CoCrFeNi high-entropy alloys. J. Alloys Compd. 509, 1607 (2011).
    https://doi.org/10.1016/j.jallcom.2010.10.210
  14. M.O. Krapivka, Yu.P. Mazur, M.P. Semen'ko, S.A. Firstov. Structureof high-entropy alloys CrMnFeCoNi and CrMnFeCoNi2Cu and thermal stability of their charge transport properties. Metallofiz. Noveish. Tekhnol. 37, 731 (2015) (in Ukrainian).
    https://doi.org/10.15407/mfint.37.06.0731
  15. H.E. Kissinger. Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702 (1957).
    https://doi.org/10.1021/ac60131a045
  16. F. Liu, F. Sommer, C. Bos, E.J. Mittemeijer. Analysis of solid state phase transformation kinetics: Models and recipes. Int. Mat. Rev. 52, 193 (2007).
    https://doi.org/10.1179/174328007X160308
  17. F. Otto, N.L. Hanold, E.P. George. Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries. Intermetallics 54, 39 (2014).
    https://doi.org/10.1016/j.intermet.2014.05.014
  18. W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, Z.P. Lu. Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy. Scripta Materialia 68, 526 (2013).
    https://doi.org/10.1016/j.scriptamat.2012.12.002
  19. H. Thomas. Uber widerstandslegierungen. ¨ Z. Phys. 129, 219 (1951).
    https://doi.org/10.1007/BF01333398
  20. G. Grube, H. Schlecht. Electroconductivity and phase diagrams of binary alloys. Z. Elektrochem. 44, 413 (1938).
  21. E. Ruedl, P. Delavignette, S. Amelinckx. Electron diffraction and electron microscopic study of long- and shortrange order in Ni4Mo and of the substructure resulting from ordering. Phys. Status Solidi 28, 305 (1968).
    https://doi.org/10.1002/pssb.19680280132
  22. J.E. Spruiell, E.E. Stansbury. X-ray study of short-range order in nickel alloys containing 10.7 and 20.0 at.% molybdenum. J. Phys. Chem. 26, 811 (1965).
    https://doi.org/10.1016/0022-3697(65)90256-8
  23. D.M.C. Nicholson, R.H. Brown. Electrical resistivity of Ni0.8Mo0.2: Explanation of anomalous behavior in shortrange ordered alloys. Phys. Rev. Lett. 70, 3311 (1993).
    https://doi.org/10.1103/PhysRevLett.70.3311
  24. Yu.N. Gornostyrev, M.I. Katsnelson. Misfit stabilized embedded nanoparticles in metallic alloys. Phys. Chem. Chem. Phys. 17, 27249 (2015).
    https://doi.org/10.1039/C5CP04641F
  25. S. Lowitzer, D. K¨odderitzsch, H. Ebert, P.R. Tulip, A. Marmodoro, J.B. Staunton. An ab initio investigation of how residual resistivity can decrease when an alloy is deformed. Europhys. Lett. 92, 37009 (2010).
    https://doi.org/10.1209/0295-5075/92/37009
  26. J.-W. Yeh, S.-Y. Changb, Y.-D. Honga, S.-K. Chenc, S.-J. Lin. Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multiprincipal elements. Mater. Chem. Phys. 103, 41 (2007).
    https://doi.org/10.1016/j.matchemphys.2007.01.003
  27. E. Nunes, J.C.C. Freitas, R.D. Pereira, A.Y. Takeuchi, C. Larica, E.C. Passamani, A.A.R. Fernandes. Phase transformation in iron/cobalt-based amorphous alloys revealed by thermal and magnetic techniques. J. Alloys Comp. 369, 131 (2004).
    https://doi.org/10.1016/j.jallcom.2003.09.072
  28. Z. Stok losa, J. Rasek, P. Kwapuli’nski, G. Haneczok, G. Badura, J. Lelatko. Nanocrystallization of amorphous alloys based on iron. Mater. Sci. Eng. C 23, 49 (2003).
  29. K.Y. Tsai, M.H. Tsai, J.W. Yeh. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61, 4887 (2013).
    https://doi.org/10.1016/j.actamat.2013.04.058
  30. C. Zhu, Z.P. Lu, T.G. Nieh. Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy. Acta Mater. 61, 2993 (2013).
    https://doi.org/10.1016/j.actamat.2013.01.059
  31. F. Otto, Y. Yang, H. Bei, E.P. George. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628 (2013).
    https://doi.org/10.1016/j.actamat.2013.01.042
  32. A. Takeuchi, A. Inoue. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 (2005).
    https://doi.org/10.2320/matertrans.46.2817