• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 5, p.372-377
https://doi.org/10.15407/ujpe62.05.0372    Paper

Fedirchyk I.I.1, Nedybaliuk O.A.1, Chernyak V.Ya.1, Demchina V.P.2

1 Taras Shevchenko National University of Kyiv
(64/13, Volodymyrs’ka Str., Kyiv 01601, Ukraine; e-mail: igor.fedirchyk@univ.kiev.ua)
2 Gas Institute, National Academy of Sciences of Ukraine
(39, Degtyarivs’ka Str., Kyiv 03113, Ukraine)

Plasma-Liquid System with Reverse Vortex Flow for Plasma-Catalytic Reforming

Section: Plasmas and Gases
Original Author's Text: Ukrainian

Abstract: A plasma-liquid system with the reverse vortex flow and a liquid electrode, which was designed for the plasma-catalytic reforming of hydrocarbons, has been studied. Discharge operation modes with the solid and liquid cathodes are compared, including the discharge voltage dependences on the distance between the upper flange and the liquid surface. The influence of the water content in a plasma-forming gas on the average energy of plasma electrons is analyzed.

Key words: plasma-liquid system, plasma-catalytic reforming, reverse vortex flow, liquid electrode.

References:

  1. A. Fridman. Plasma Chemistry (Cambridge Univ. Press,2008) [ISBN: 9780521847353].
    https://doi.org/10.1017/CBO9780511546075
  2. G. Petitpas, J.D. Rollier, A. Darmon, J. Gonzalez-Aguilar, R. Metkemeijer, L. Fulcheri. A comparative study of nonthermal plasma assisted reforming technologies. Inter. J. Hydrogen Ener. 32, 2848 (2007).
    https://doi.org/10.1016/j.ijhydene.2007.03.026
  3. L. Bromberg, D.R. Cohn, A. Rabinovich. Hydrogen manufacturing using low current, non-thermal plasma boosted fuel converters. In Proceedings of the Symposium "Energy for the 21st century: Hydrogen energy", sponsored by the Fuel Chemistry Division of the American Chemical Society, April 2001, San Diego, Report No. PSFC/RR-01-1 (2000).
  4. O.A. Nedybaliuk, V.Ya. Chernyak, V.V. Kolgan, V.V. Iukhymenko, O.V. Solomenko, I.I. Fedirchyk, E.V. Martysh, V.P. Demchina, N.V. Klochok, S.V. Dragnev. Plasma–catalytic reforming of liquid hydrocarbons. Probl. At. Sci. Tech. 21, 235 (2015).
  5. A.I. Maximov. Physical and chemical properties of plasmasolution systems and possiblity of their technological applications. In Encyclopedia of Low-Temperature Plasma, edited by V.E. Fortov (Moscow, 2000), p. 263.
  6. A. Fridman, S. Nester, L.A. Kennedy, A. Saveliev, O. Mutaf-Yardimci. Gliding arc gas discharge. Prog. Ener. Combust. Sci. 25, 211 (1999).
    https://doi.org/10.1016/S0360-1285(98)00021-5
  7. A.S. Koroteev, V.M. Mironov, Y.S. Svirchuk. Plasmatrons: Designs, Characteristics, Computations (Mashinostroenie, 1993) (in Russian).
  8. C.S. Kalra, M. Kossitsyn, K. Iskenderova, A. Chirokov, Y.I. Cho, A. Gutsol, A. Fridman. Electrical discharges in the reverse vortex flow – Tornado discharges. in Electronic Proceedings of the 16th International Symposium on Plasma Chemistry, Taormina, Italy (2003), p. ISPC-565.
  9. C.O. Laux, T.G. Spence, C.H. Kruger, R.N. Zare. Optical diagnostics of atmospheric pressure air plasmas. Plasma Sourc. Sci. Technol. 12, 125 (2003).
    https://doi.org/10.1088/0963-0252/12/2/301
  10. I.I. Fedirchyk, O.A. Nedybaliuk, V.Ya. Chernyak, A.I. Liptuga. Plasma injectors based on rotating gliding discharge with reverse vortex flow with liquid electrode. Plasma Phys. Technol. 2, 124 (2015).
  11. G.J.M. Hagelaar, L.C. Pitchford. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sourc. Sci. Technol. 14, 722 (2005).
    https://doi.org/10.1088/0963-0252/14/4/011