• Українська
  • English

<Prev | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 5, p.365-371
https://doi.org/10.15407/ujpe62.05.0365    Paper

Indutnyi I.Z., Ushenin Yu.V., Myn'ko V.I., Shepeliavyi P.E., LukaniukM.V., Korchovyi A.A., Khrystosenko R.V.

V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(41, Nauky Ave., Kyiv 03028, Ukraine; e-mail: indutnyy@isp.kiev.ua)

Nanostructured Au Chips with Enhanced Sensitivity for Sensors Based on Surface Plasmon Resonance

Section: Optics, Lasers, and Quantum Electronics
Original Author's Text: Ukrainian

Abstract:  The enhancement of the sensitivity of a surface-plasmon-resonance refractometer by forming a periodic relief in the form of a grating with a submicron period on the surface of an Au chip has been studied. Periodic reliefs with the spatial frequency ν = (3370 ± 5) line/mm and various depths were formed on the Au film surface using interference lithography and vacuum chalcogenide photoresists. The degree of refractometer sensitivity enhancement and the variation interval of the environment refractive index, Δn, in which this enhancement is observed, are found to depend on the grating relief depth. The interval Δn decreases with the growth of the relief depth, whereas the sensitivity increases from 110 deg/RIU for a standard chip to 154 and 363 deg/RIU for structured chips with relief depths of 11.7 ± 2 and 18.5 ± 2 nm, respectively.

Key words: surface plasmon resonance, biosensors, interference lithography, vacuum chalcogenide photoresists.


  1. C. Nylander, B. Liedberg, T. Lind. Gas detection by meansof surface plasmon resonance. Sens. Actuat. 3, 79 (1982).
  2. B. Moslehi, M.W. Foster, P. Harvey. Optical magnetic and electric field sensors based on surface plasmon polariton resonant coupling. Electron. Lett. 27, 951 (1991).
  3. A. Schilling, O. Yava¸s, J. Bischof, J. Boneberg, P. Leiderer. Absolute pressure measurements on a nanosecond time scale using surface plasmons. Appl. Phys. Lett. 69, 4159 (1996).
  4. H.-M. Schmitt, A. Brecht, J. Piehler, G. Gauglitz. An integrated system for optical biomolecular interaction analysis. Biosens. Bioelectron. 12, 809 (1997).
  5. L. Huang, G. Reekmans, D. Saerens, J.-M. Friedt, F. Frederix, L. Francis, S. Muyldermans, A. Campitelli, C. Van Hoof. Prostate-specific antigen immunosensing based on mixed self-assembled monolayers, camel antibodies and colloidal gold enhanced sandwich assays. Biosens. Bioelectron. 21, 483 (2005).
  6. E. Mauriz, A. Calle, J.J. Mancl’us, A. Montoya, L.M. Lechuga. Multi-analyte SPR immunoassay for enviromental biosensing of pesticides. Analyt. Bioanalyt. Chem. 387, 1449 (2007).
  7. P.D. Patel. Overview of affinity biosensors in food analysis. J. AOAC Int. 89, 805 (2006).
  8. E. Kretschmann, H. Raether. Radiative decay of nonradiative surface plasmons excited by light. Z. Naturforsch. 23A, 2135 (1968).
  9. P. Englebienne, A. Van Hoonacker, M. Verhas. Surface plasmon resonance: principles, methods and applications in biomedical sciences. Spectroscopy 17, 255 (2003).
  10. R.S. Moirangthem, Y.-C. Chang, P.-K. Wei. Ellipsometry study on gold-nanoparticle-coated gold thin film for biosensing application. Biomed. Opt. Express 2, 2569 (2011).
  11. K.M. Byun, S.J. Yoon, D. Kim, S.J. Kim. Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires. Opt. Lett. 32, 1902 (2007).
  12. W.P. Hu, S.-J. Chen, K.-T. Huang, J.H. Hsu, W.Y. Chen, G.L. Chang, K.-A. Lai. A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanoclusterembedded dielectric film. Biosens. Bioelectron. 19, 1465 (2004).
  13. C.J. Alleyne, A.G. Kirk, R.C. McPhedran, N-A.P. Nicorovici, D. Maystre. Enhanced SPR sensitivity using periodic metallic structures. Opt. Express 15, 8163 (2007).
  14. A. Cattoni, E. Cambril, D. Decanini, G. Faini, A.M. Haghiri-Gosnet. Soft UV-NIL at 20 nm scale using flexible bi-layers tamp casted on HSQ master mold. Microelectr. Eng. 87, 1015 (2010).
  15. Y. Fu, N. Kok, A. Bryan, W. Zhou. Self-organized formation of a Blazed-grating-like structure on Si(100) induced by focused ion-beam scanning. Opt. Express 12, 1803 (2004).
  16. X.Y. Zhang, A.V. Whitney, J. Zhao, E.M. Hicks, R.P. Van Duyne. Advances in contemporary nanosphere lithographic techniques. J. Nanosci. Nanotechnol. 6, 1920 (2006).
  17. S.Y. Chuang, H.L. Chen, S.S. Kuo, Y.H. Lai, C.C. Lee. Using direct nanoimprinting to study extraordinary transmission in textured metal films. Opt. Express 16, 2415 (2008).
  18. F. Brizuela, Y. Wang, C.A. Brewer, F. Pedaci, W. Chao, E.H. Anderson, Y. Liu, K.A. Goldberg, P. Naulleau, P. Wachulak, M.C. Marconi, D.T. Attwood, J.J. Rocca, C.S. Menoni. Microscopy of extreme ultraviolet lithography masks with 13.2 nm tabletop laser illumination. Opt. Lett. 34, 271 (2009).
  19. A. Arriola, A. Rodriguez, N. Perez, T. Tavera, M.J. Withford, A. Fuerbach, S.M. Olaizola. Fabrication of high quality sub-micron Au gratings over large areas with pulsed laser interference lithography for SPR sensors. Opt. Mater. Express 2, 1571 (2012).
  20. M. Vala, J. Homola. Flexible method based on fourbeam interference lithography for fabrication of large areas of perfectly periodic plasmonic arrays. Opt. Express 22, 18778 (2014).
  21. I.Z. Indutnyi, V.I. Myn'ko, P.E. Shepeliavyi, M.V. Sopins'kyi, V.M. Tkach, V.A. Dan'ko. Photonic nanostructure formation using interference lithography and deposition at a gtrazingn incidence angle in vacuum. Optoelektr. Poluprovodn. Tekhn. 46,4 9 (2011) (in Russian).
  22. V. Dan'ko, I. Indutnyi, M. Min'ko, P. Shepelyavyi. Instrumentation and Data Processing. Interference photolithography with the use of resists on the basis of chalcogenide glassy semiconductors. Optoelectron. Instrument. Proc. 46, 483 (2010).
  23. V.A. Dan'ko, G.V. Dorozinsky, I.Z. Indutnyi, V.I. Myn'ko, Yu.V. Ushenin, P.E. Shepeliavyi, M.V. Lukaniuk, A.A. Korchovyi, R.V. Khrystosenko. Nanopatterning Au chips for SPR refractometer by using interference lithography and chalcogenide photoresist. Semiconductor Physics, Quantum Electronics & Optoelectronics 18, 438 (2015).