• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 4, p.335-342

    Paper

Boichuk V.I., Bilynskyi I.V., Pazyuk R.I.

Department of Theoretical and Applied Physics and Computer Simulation,
Ivan Franko State Pedagogical University of Drohobych
(3, Stryiska Str., Drohobych 82100, Ukraine; e-mail: ri.pazyuk@gmail.com)

Miniband Electrical Conductivity in Superlattices of Spherical InAs/GaAs Quantum Dots

Section: Nanosystems
Original Author's Text: Ukrainian

Abstract: The electrical properties of nanoscale semiconductor InAs/GaAs heterosystems with 2Dsuperlattices of spherical quantum dots have been studied. The dependences of the electron group velocity on the wave vector and the miniband quantum number are obtained. The dependences of the Fermi level of electrons in minibands on the concentration of donor impurities, donor energy, and temperature are found. The temperature dependences of the majority carrier concentration and the electrical conductivity are analyzed for various donor concentrations and energies.

Key words: quantum dot, superlattice, electron states, miniband, electrical conductivity

References:

  1. I.D. Rukhlenko, D. Handapangoda, M. Premaratne, A.V. Fedorov, A.V. Baranov, C. Jagadish. Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire: Beyond the dipole approximation. Opt. Express 17, 17570 (2009). 340 ISSN 2071-0194. Ukr. J. Phys. 2017. Vol. 62, No. 4
  2. X.L. Wu, F.S. Xue. Optical transition in discrete levels of Si quantum dots. Appl. Phys. Lett. 84, 2808 (2004).
    https://doi.org/10.1063/1.1704872
  3. O.B. Shchekin, G. Park, D.L. Huffaker, D.G. Deppe. Discrete energy level separation and the threshold temperature dependence of quantum dot lasers. Appl. Phys. Lett. 77, 466 (2000).
    https://doi.org/10.1063/1.127012
  4. A.V. Fedorov, I.D. Rukhlenko, A.V. Baranov, S.Yu. Kruchinin. Optical Properties of Semiconductor Quantum Dots (Nauka, 2011) (in Russian).
  5. Semiconductor Quantum Dots, edited by Y. Masumoto, T. Takagahara (Springer, 2002) [ISBN: 978-3-662-05001-9].
    https://doi.org/10.1007/978-3-662-05001-9
  6. S.M. Reimann, M. Manninen. Electronic structure of quantum dots. Rev. Mod. Phys. 74, 1283 (2002).
    https://doi.org/10.1103/RevModPhys.74.1283
  7. A.D. Yoffe. Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems. Adv. Phys. 50, 1 (2001).
    https://doi.org/10.1080/00018730010006608
  8. I.D. Rukhlenko, M.Y. Leonov, V.K. Turkov, A.P. Litvin, A.S. Baimuratov, A.V. Baranov, A.V. Fedorov. Kinetics of pulse-induced photoluminescence from a semiconductor quantum dot. Opt. Express 20, 27612 (2012).
    https://doi.org/10.1364/OE.20.027612
  9. A.S. Baimuratov. Shape-induced anisotropy of intraband luminescence from a semiconductor nanocrystal. Opt. Lett. 37, 4645 (2012).
    https://doi.org/10.1364/OL.37.004645
  10. D. Press, Th.D. Ladd, B. Zhang, Y. Yamamoto. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218 (2008).
    https://doi.org/10.1038/nature07530
  11. A.V. Baranov, A.V. Fedorov, I.D. Rukhlenko, Y. Masumoto. Intraband carrier relaxation in quantum dots embedded in doped heterostructures. Phys. Rev. B 68, 205318 (2003).
    https://doi.org/10.1103/PhysRevB.68.205318
  12. V.I. Boichuk, I.V. Bilynskyi, R.Ya. Leshko, L.M. Turyanska. Optical properties of a spherical quantum dot with two ions of hydrogenic impurity. Physica E 54, 281 (2013).
    https://doi.org/10.1016/j.physe.2013.07.003
  13. V.I. Boichuk, I.V. Bilynsky, I.O. Shakleina, I. Kogoutiouk. Dielectric mismatch in finite barrier cubic quantum dots. Physica E 43, 161 (2010).
    https://doi.org/10.1016/j.physe.2010.06.031
  14. A.J. Shields. Semiconductor quantum light sources. Nat. Photon. 1, 215 (2007).
    https://doi.org/10.1038/nphoton.2007.46
  15. K.J. Vahala. Optical microcavities. Nature 424, 839 (2003).
    https://doi.org/10.1038/nature01939
  16. V.I. Klimov, A.A. Mikhailovsky, S. Xu, A. Malko. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314 (2000).
    https://doi.org/10.1126/science.290.5490.314
  17. Z.L. Yuan, B.E. Kardynal, R.M. Stevenson, A.J. Shields, C.J. Lobo, K. Cooper, N.S. Beattie, D.A. Ritchie, M. Pepper. Electrically driven single-photon source. Science 295, 102 (2002).
    https://doi.org/10.1126/science.1066790
  18. A.J. Bennett, D.C. Unitt, P. See, A.J. Shields, P. Atkinson, K. Cooper, D.A. Ritchie. Microcavity single-photonemitting diode. Appl. Phys. Lett. 86, 181102 (2005).
    https://doi.org/10.1063/1.1921332
  19. P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, A. Imamoglu. A quantum dot singlephoton turnstile device. Science 290, 2282 (2000)].
    https://doi.org/10.1126/science.290.5500.2282
  20. K. Tanabe, K. Watanabe, Y. Arakawa. III-V/Si hybrid photonic devices by direct fusion bonding. Sci. Rep. 2, 349 (2012).
    https://doi.org/10.1038/srep00349
  21. J. Jasieniak, B.I. MacDonald, S.E. Watkins, P. Mulvaney. Solution-processed sintered nanocrystal solar cells via layer-by-layer assembly. Nano Lett. 11, 2856 (2011).
    https://doi.org/10.1021/nl201282v
  22. I. Gur, N.A. Fromer, M.L. Geier, A.P. Alivisatos. Airstable all-inorganic nanocrystal solar cells processed from solution. Science 310, 462 (2005).
    https://doi.org/10.1126/science.1117908
  23. P. Prabhakaran, W.J. Kim, K.S. Lee, P.N. Prasad. Quantum dots (QDs) for photonic applications. Opt. Mater. Express 2, 578 (2012).
    https://doi.org/10.1364/OME.2.000578
  24. S.A. McDonald, G. Konstantatos, S. Zhang, P.W. Cyr, E.J.D. Klem, L. Levina, E.H. Sargent. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4, 138 (2005).
    https://doi.org/10.1038/nmat1299
  25. D. Qi, M. Fischbein, M. Drndi’c, S. Selmi’c. Efficient poly- ˇmer-nanocrystal quantum-dot photodetectors. Appl. Phys. Lett. 86, 093103 (2005).
    https://doi.org/10.1063/1.1872216
  26. N.V. Tkach, A.M. Makhanets, G.G. Zegrya. Energy spectrum of electron in quasiplane superlattice of cylindrical quantum dots. Semicond. Sci. Technol. 15, 395 (2000).
    https://doi.org/10.1088/0268-1242/15/4/315
  27. N.V. Tkach, Yu.A. Seti. Optimization of the configuration of symmetric three-barrier resonance-tunnel structure as an active element of a quantum cascade detector. Fiz. Tekh. Poluprovodn. 45, 387 (2011) (in Russian).
  28. Ju.O. Seti, M.V. Tkach, I.V. Boyko. Influence of non-linear electrons interaction at their transport through the symmetric two- barrier resonance nano-system. J. Optoelectron. Adv. Mater. 14, 393 (2012).
  29. V.A. Holovatsky, V.I. Gutsul, O.M. Makhanets. Energy spectrum of electron in superlattice along the elliptic nanowire. Rom. J. Phys. 52, 327 (2007).
  30. O.L. Lazarenkova, A.A. Balandin. Miniband formation in a quantum dot crystal. J. Appl. Phys. 89, 5509 (2001).
    https://doi.org/10.1063/1.1366662
  31. O.L. Lazarenkova, A.A. Balandin. Electron and phonon energy spectra in a three-dimensional regimented quantum dot superlattice. Phys. Rev. B 66, 245319 (2002).
    https://doi.org/10.1103/PhysRevB.66.245319
  32. V.I. Boichuk, I.V. Bilynsky, R.I. Pazyuk, I.O. Shakleina. Energy spectrum of charges in a periodic system of spherical quantum dots. Fiz. Khim. Tverd. Tila 10, 752 (2009) (in Ukrainian).
  33. V.I. Boichuk, I.V. Bilynsky, R.I. Pazyuk. Coefficient of light absorption induced by electron intersubband transitions in superlattices of spherical quantum dots. Zh. Fiz. Dosl. 19, 1601 (2015) (in Ukrainian).
  34. V. Boichuk. Fundamentals of Solid State Theory: A Tutorial (Kolo, 2010) (in Ukrainian).
  35. R. Mohan, Y. Liang. Intersublevel relaxation properties of self-assembled InAs/GaAs quantum dot heterostructures. In Cutting Edge Nanotechnology (InTech, 2010), p. 316 [ISBN: 978-953-7619-93-0].
  36. V.I. Boichuk, I.V. Bilynskyi, O.A. Sokolnyk, I.O. Shakleina. Effect of quantum dot shape of the GaAs/AlAs heterostructure on interlevel hole light absorption. Cond. Matter Phys. 16, 33702 (2013).
    https://doi.org/10.5488/CMP.16.33702