• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 4, p.326-334

    Paper

Morozovska A.N.1,2, Glinchuk M.D.3, Varenyk O.V.1, Udod A.3, Scherbakov C.M.2, Kalinin S.V. 4

1 Institute of Physics, Nat. Acad. of Sci. of Ukraine
(46, Prosp. Nauky, Kyiv 03028, Ukraine)
2 Taras Shevchenko Kiev National University, Physical Faculty, Chair of Theoretical Physics
(4e, Prosp. Academician Glushkov, Kyiv 03022, Ukraine)
3 I. Frantsevich Institute for Problems of Materials Science, Nat. Acad. of Sci. of Ukraine
(3, Krizanovskogo Str., Kyiv 03142, Ukraine)
4 Center for Nanophase Materials Sciences, Oak Ridge National Laboratory
(Oak Ridge, TN 37831)

Flexoelectric Effect Impact on the Hysteretic Dynamics of the Local Electromechanical Response of Mixed Ionic-Electronic Conductors

Section: Solid Matter
Original Author's Text: English

Abstract: Strong coupling among electrochemical potentials, concentrations of electrons, ions, and strains mediated by the flexoelectric effect is a ubiquitous feature of moderate conductors, in particular, MIECs, the materials of choice in devices ranging from electroresistive and memristive elements to ion batteries and fuel cells. Corresponding mechanisms that govern biasconcentration-strain changes (Vegard expansion, deformation potential, and flexoelectric effect) are analyzed. Notably, that the contribution of the flexoelectric coupling to a local surface displacement of the moderate conductors is a complex dynamic effect which may lead to the drastic changing of the material mechanical response, depending on the values of flexoelectric coefficients and other external conditions. Numerical simulations have shown that the flexoelectric impact on the mechanical response ranges from the appearance of additional strain components, essential changes of a hysteresis loop shape and orientation, and the appearance of complex twisted hysteresis loops.

Key words: flexoelectric effect, mixed ionic-electronic moderate conductors, thin films, nanoparticles, electrochemical strain microscopy.

References:

  1. A. Sawa. Resistive switching in transition metal oxides. Materials Today 11, 28 (2008).
    https://doi.org/10.1016/S1369-7021(08)70119-6
  2. B. Magyari-K¨ope, M. Tendulkar, S.-G. Park, H.D. Lee, Y. Nishi. Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3. Nanotechnology 22, 254029 (2011).
    https://doi.org/10.1088/0957-4484/22/25/254029
  3. D.-Sh. Shang, L. Shi, J.-R. Sun, B.-G. Shen. Local resistance switching at grain and grain boundary surfaces of polycrystalline tungsten oxide films. Nanotechnology 22, 254008 (2011).
    https://doi.org/10.1088/0957-4484/22/25/254008
  4. Y. Kim, S. Kelly A. Morozovska, E.K. Rahani, E. Strelcov, E. Eliseev, S. Jesse, M. Biegalski, N. Balke, N. Benedek, D. Strukov, J. Aarts, I. Hwang, S. Oh, J.S. Choi, T. Choi, B.H. Park, V. Shenoy, P. Maksymovych, S. Kalinin. Mechanical control of electroresistive switching. Nano Lett. 13, 4068 (2013).
    https://doi.org/10.1021/nl401411r
  5. R. Waser, M. Aono. Nanoionics-based resistive switching memories. Nature Mater. 6, 833 (2007).
    https://doi.org/10.1038/nmat2023
  6. K. Szot, M. Rogala, W. Speier, Z. Klusek, A. Besmehn, R. Waser. TiO2 – a prototypical memristive material. Nanotechnology 22, 254001 (2011).
    https://doi.org/10.1088/0957-4484/22/25/254001
  7. A.N. Morozovska, E.A. Eliseev, S.V. Kalinin. Electromechanical probing of ionic currents in energy storage materials. Appl. Phys. Lett. 96, 222906 (2010)
    https://doi.org/10.1063/1.3446838
  8. A.N. Morozovska, E.A. Eliseev, N. Balke, S.V. Kalinin. Local probing of ionic diffusion by electrochemical strain microscopy: Spatial resolution and signal formation mechanisms. J. Appl. Phys.108, 053712 (2010).
    https://doi.org/10.1063/1.3460637
  9. N. Balke, S. Jesse, A.N. Morozovska, E. Eliseev, D.W. Chung, Y. Kim, L. Adamczyk, R.E. Garcimatha, N. Dudney, S.V. Kalinin. Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nature Nanotechnol. 5, 749 (2010).
    https://doi.org/10.1038/nnano.2010.174
  10. A.N. Morozovska, E.A. Eliseev, O.V. Varenyk, Y. Kim, E. Strelcov, A. Tselev, N.V. Morozovsky, S.V. Kalinin. Nonlinear space charge dynamics in mixed ionic-electronic conductors: Resistive switching and ferroelectric-like hysteresis of electromechanical response. J. Appl. Phys. 116, 066808 (2014).
    https://doi.org/10.1063/1.4891346
  11. A.N. Morozovska, E.A. Eliseev, A.K. Tagantsev, S.L. Bravina, L.-Q. Chen, S.V. Kalinin. Thermodynamics of electromechanically coupled mixed ionic-electronic conductors: Deformation potential, Vegard strains, and flexoelectric effect. Phys. Rev. B 83, 195313 (2011).
    https://doi.org/10.1103/PhysRevB.83.195313
  12. A.N. Morozovska, E.A. Eliseev, G.S. Svechnikov, S.V. Kalinin. Nanoscale electromechanics of paraelectric materials with mobile charges: Size effects and nonlinearity of electromechanical response of SrTiO3 films. Phys. Rev. B 84, 045402 (2011).
    https://doi.org/10.1103/PhysRevB.84.045402
  13. A.N. Morozovska, E.A. Eliseev, S.V. Kalinin. Electrochemical strain microscopy with blocking electrodes: The role of electromigration and diffusion. J. Appl. Phys. 111, 014114 (2012).
    https://doi.org/10.1063/1.3675508
  14. A.N. Morozovska, E.A. Eliseev, S.L. Bravina, F. Ciucci, G.S. Svechnikov, L.-Q. Chen, S.V. Kalinin. Frequency dependent dynamical electromechanical response of mixed ionic-electronic conductors. J. Appl. Phys. 111, 014107 (2012).
    https://doi.org/10.1063/1.3673868
  15. L.O. Chua. Memristor – The missing circuit element. IEEE Trans. Circuit Theory 18, 507 (1971).
    https://doi.org/10.1109/TCT.1971.1083337
  16. L.O. Chua, S.M. Kang. Memristive devices and systems. Proc. IEEE 64, 209 (1976).
    https://doi.org/10.1109/PROC.1976.10092
  17. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams. The missing memristor found. Nature 453, 80 (2008).
    https://doi.org/10.1038/nature06932
  18. D.B. Strukov, J.L. Borghetti, R.S. Williams. Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small 5 (9), 1058 (2009).
    https://doi.org/10.1002/smll.200801323
  19. Y. Gil, O.M. Umurhan, I. Riess. Properties of solid state devices with mobile ionic defects. Part I: The effects of motion, space charge and contact potential in metal|semiconductor|metal devices. Solid State Ionics 178, 1 (2007).
    https://doi.org/10.1016/j.ssi.2006.10.024
  20. Y. Gil, O.M. Umurhan, I. Riess. Properties of a solid state device with mobile dopants: Analytic analysis for the thin film device. J. Appl. Phys. 104, 084504 (2008).
    https://doi.org/10.1063/1.2993618
  21. D. Seol, S. Park, O.V. Varenyk, S. Lee, Ho Nyung Lee, Anna N. Morozovska, Y. Kim. Determination of ferroelectric contributions to electromechanical response by frequency dependent piezoresponse force microscopy. Scientific Reports 6, 30579 (2016).
    https://doi.org/10.1038/srep30579
  22. S.M. Allen, J.W. Cahn. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metallurgica 27 (6), 1085 (1979).
    https://doi.org/10.1016/0001-6160(79)90196-2
  23. X. Zhang, W. Shyy, A. M. Sastry. Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 154, A910 (2007).
    https://doi.org/10.1149/1.2759840
  24. M. Tang, H.Y. Huang, N. Meethong, Y.H. Kao, W.C. Carter, Y.M. Chiang. Model for the particle size, overpotential, and strain dependence of phase transition pathways in storage electrodes: Application to nanoscale olivines. Chem. Mater. 21 (8), 1557 (2009).
    https://doi.org/10.1021/cm803172s
  25. M. Tang, W.C. Carter, J.F. Belak, Yet-Ming Chiang. Modeling the competing phase transition pathways in nanoscale olivine electrodes. Electrochimica Acta 56 (2), 969 (2010).
    https://doi.org/10.1016/j.electacta.2010.09.027
  26. V.S. Mashkevich, K.B. Tolpygo. Electrical, optical and elastic properties of diamond type crystals. Sov. Phys. JETP. 5 (3), 435 (1957).
  27. A.K. Tagantsev. Electric polarization in crystals and its response to thermal and elastic perturbations. A Multinational Journal 35 (3–4), 119 (1991).
  28. S.M. Kogan. Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov. Phys. Solid State 5 (10), 2069 (1964).
  29. P.V. Yudin, A.K. Tagantsev. Fundamentals of flexoelectricity in solids. Nanotechnology 24 (43), 432001 (2013).
    https://doi.org/10.1088/0957-4484/24/43/432001
  30. P. Zubko, G. Catalan, A.K. Tagantsev. Flexoelectric effect in solids. Ann. Rev. Mater. Research 43, 387 (2013).
    https://doi.org/10.1146/annurev-matsci-071312-121634
  31. E.A. Eliseev, A.N. Morozovska, M.D. Glinchuk, R. Blinc. Spontaneous flexoelectric/flexomagnetic effect in nanoferroics. Phys. Rev. B 79 (16), 165433 (2009).
    https://doi.org/10.1103/PhysRevB.79.165433
  32. M.D. Glinchuk, E.A. Eliseev, A.N. Morozovska. Spontaneous flexoelectric effect in nanosystems (topical review). Ferroelectrics 500, 90 (2016).
    https://doi.org/10.1080/00150193.2016.1214994
  33. S.V. Kalinin, A.N. Morozovska. Multiferroics: Focusing light on flexoelectricity. Nature Nanotechnology 10, 916 (2015).
    https://doi.org/10.1038/nnano.2015.213
  34. D. Lee, A. Yoon, S.Y. Jang, J.G. Yoon, J.S. Chung, M. Kim, J.F.Scott, T.W. Noh. Giant flexoelectric effect in ferroelectric epitaxial thin films. Phys. Rev. Lett. 107 (5), 057602 (2011).
    https://doi.org/10.1103/PhysRevLett.107.057602
  35. A.N. Morozovska, M.D. Glinchuk. Flexo-chemo effect in nanoferroics as a source of critical size disappearance at size-induced phase transitions. J. Appl. Phys. 119 (9), 094109 (2016).
    https://doi.org/10.1063/1.4942859
  36. G. Catalan, B. Noheda, J. McAneney, L.J. Sinnamon, J.M. Gregg. Strain gradients in epitaxial ferroelectrics. Phys. Rev. B 72 (2), 020102 (2005).
    https://doi.org/10.1103/PhysRevB.72.020102
  37. M.S. Majdoub, R. Maranganti, P. Sharma. Understanding the origins of the intrinsic dead layer effect in nanocapacitors. Phys. Rev. B 79 (11), 115412 (2009).
    https://doi.org/10.1103/PhysRevB.79.115412
  38. A.N. Morozovska, E.A. Eliseev, Y.A. Genenko, I.S. Vorotiahin, M.V. Silibin, Y. Cao, Y. Kim, M.D. Glinchuk, S.V. Kalinin. Flexocoupling impact on size effects of piezoresponse and conductance in mixed-type ferroelectric semiconductors under applied pressure. Phys. Rev. B 94, 174101 (2016).
    https://doi.org/10.1103/PhysRevB.94.174101
  39. Y. Gil, Y. Tsur, O.M. Umurhan, I. Riess. Properties of solid state devices with significant impurity hopping conduction. J. Phys. D: Appl. Phys. 41, 135106 (2008).
    https://doi.org/10.1088/0022-3727/41/13/135106
  40. O.V. Varenyk, M.V Silibin, D.A Kiselev, E.A. Eliseev, S.V. Kalinin, A.N. Morozovska. Self-consistent modelling of electrochemical strain microscopy in mixed ionicelectronic conductors: Nonlinear and dynamic regimes. J. Appl. Phys. 118, 072015 (2015).
    https://doi.org/10.1063/1.4927815
  41. D.A. Freedman, D. Roundy, T.A. Arias. Elastic effects of vacancies in strontium titanate: Short- and long-range strain fields, elastic dipole tensors, and chemical strain. Phys. Rev. B 80, 064108 (2009).
    https://doi.org/10.1103/PhysRevB.80.064108
  42. X. Zhang, A.M. Sastry, W. Shyy. Intercalation-induced stress and heat generation within single lithium-ion battery cathode particles. J. Electrochem. Soc. 155, A542 (2008).
    https://doi.org/10.1149/1.2926617
  43. H.-Ch. Chang, G. Jaffe. Polarization in electrolytic solutions. Part I. Theory. J. Chem. Phys. 20, 1071 (1952).
    https://doi.org/10.1063/1.1700669