• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 4, p.311-317

    Paper

Moiseenko V.E., Lozin A.V., Kozulia M.M., Mironov Yu.K., Romanov V.S., Konovalov V.G., Shapoval A.N.

Institute of Plasma Physics,
National Scientific Center “Kharkiv Institute of Physics and Technology”
(1, Akademichna Str., Kharkiv 61108, Ukraine; e-mail: mikekozulya@kipt.kharkov.ua)

Alfvén Plasma Heating in Stellarator Uragan-2M

Section: Plasmas and Gases
Original Author's Text: English

Abstract: A new antenna of the crankshaft type is successfully employed in experiments on Uragan- 2M. It creates and heats plasma at frequencies below the ion-cyclotron frequency. The discharge created with the antenna is “hot” during few milliseconds and then fades under strong impurity influx into plasma. The radial profiles of OV and CV optical emissions are investigated. Both are concave, especially the OV profile. This can be explained by some burnout of O4+ and C4+ ions and its transition to O5+ and C5+ ionization states near the magnetic axis. The magnetic field optimisation and the Alfv´en heating allowed burning-out the light impurities prior to the discharge degradation. The experiments in support of the fusion-fission stellarator reactor concept are also carried out. The stellarator-mirror machine is modeled by switching off a toroidal field coil at Uragan-2M. The embedded mirror with lower magnetic field is created in this way. Plasma is successfully produced and heated in such a combined magnetic trap.

Key words:  radio frequency heating, stellarator, fusion-fission hybrid.

References:

  1. J. Vaclavik, K. Appert. Theory of plasma heating by low frequency waves: Magnetic pumping and Alfv’en resonance heating. Nucl. Fusion 31, 1945 (1991).
    https://doi.org/10.1088/0029-5515/31/10/013
  2. O.P. Fesenyuk, Ya.I. Kolesnichenko, V.V. Lutsenko, R.B. White, Yu.V. Yakovenko. Alfv’en continuum and Alfv’en eigenmodes in the National Compact Stellarator Experiment. Phys. Plasmas 11, 5444 (2004).
    https://doi.org/10.1063/1.1806136
  3. A.G. Elfimov, S.N. Lozovskij, V.V.Dorokhov. Alfv’en heating of a plasma with an axial homogeneous current. Nucl. Fusion 24, 609 (1984).
    https://doi.org/10.1088/0029-5515/24/5/007
  4. K. Appert, G.A. Collins, F. Hofmann, R. Keller, A. Lietti, J.B. Lister, A. Pochelon, L. Villard. Observations of toroidal coupling for low-n Alfv’en modes in the TCA tokamak. Phys. Rev. Lett. 54, 1671 (1985).
    https://doi.org/10.1103/PhysRevLett.54.1671
  5. S.N. Golovato, J.L. Shohet, J.A. Tataronis. Alfv’en-wave heating in the Proto-Cleo stellarator. Phys. Rev. Lett. 37, 1272 (1976).
    https://doi.org/10.1103/PhysRevLett.37.1272
  6. R.A. Demirkhanov, A.G. Kirov, G.I. Astapenko et al. Plasma heating and current drive by Alfv’en waves. In: 9th Int. Conf. on Plasma Phys. and Contr. Nucl.Pus. Res., IAEA, Vienna, vol. 2, 91 (1983).
  7. O.M. Shvets, I.A. Dikij, S.S. Kalinichenko et al. Absorption of Alfv’en waves and plasma production in the OMEGA and URAGAN-3 toroidal devices. Nucl. Fusion 26, 23 (1986).
    https://doi.org/10.1088/0029-5515/26/1/003
  8. V.E. Moiseenko, A.A. Ivanov, A.V. Anikeev, P.A. Bagryansky. 12th Topical Conf. On RF Power in Plasmas, Savannah, GA, AIP Conference Proceedings, AIP, New York, p. 479 (1997).
  9. G. Besson, A. de Chambrier, G.A. Collins, B. Joye, A. Lietti, J.B. Lister, J.M. Moret, S. Nowak, C. Simm, H. Weisen. A review of Alfv’en wave heating. Plasma Phys. Control. Fusion 28, 1291 (1986).
    https://doi.org/10.1088/0741-3335/28/9A/008
  10. L.F. Ruchko, E. Lerche, R.M.O. Galv˜ao, A.G. Elfimov, I.C. Nascimento, W.P. de S’a, E. Sanada, J.I. Elizondo, A.A. Ferreira, S. Saettone, J.H.F. Severo, V. Bellintani, O.C. Usuriaga. The analysis of Alfv’en wave current drive and plasma heating in TCABR tokamak. Braz. J. Phys. 32, 57 (2002).
    https://doi.org/10.1590/S0103-97332002000100012
  11. S.N. Golovato, K. Brau, J. Casey, J. Coleman, M.J. Gerver, W. Guss, G. Hallock, S. Horne, J. Irby, R. Kumazawa, J. Kesner, B. Lane, J. Machuzak, T. Moran, R. Myer, R.S. Post, E. Sevillano, D.K. Smith, J.D. Sullivan, R. Torti, L. Wang, Y. Yasaka, X.Z. Yao, J. Zielinski. Plasma production and heating in a tandem mirror central cell by radiofrequency waves in the ion cyclotron frequency range. Phys. Fluids 31, 3744 (1988).
    https://doi.org/10.1063/1.866893
  12. M. Kwon, J.G. Bak, K. Choh et al. Recent results of the HANBIT mirror device. Fusion Sci. Technol. 43 (1T), 23 (2003).
  13. M. Ichimura, S. Tanaka, C. Nakagawa et al. High-density plasma production with fast Alfv’en waves in the GAMMA 10 tandem mirror. Fusion Sci. Technol. 39,167 (2001).
  14. K. Nishimura, T. Shoji, and CHS Group. Experiment on RF plasma production in CHS. Stellarator Physics. Proc. 7th Int. Workshop Oak Ridge, TN, 1989, IAEATECDOC-558, IAEA, Vienna, 265 (1990).
  15. A.G. Dikij, S.S. Kalinichenko, A.A. Kalmykov, I.I. Konovalov, S.S. Ovchinnikov, O.S. Pavlichenko, V.K. Pashnev, A.S. Slavnyi, V.A. Suprunenko, V.F. senko, V.T. Tolok, O.M. Shvets. RF plasma heating in the Uragan stellarator. I. Wave launching and plasma heating. Plasma Phys. 18, 577 (1976).
    https://doi.org/10.1088/0032-1028/18/8/001
  16. V.E. Moiseenko, V.L. Berezhnyj, V.N. Bondarenko, P.Ya. Burchenko, F. Castejen, V.V. Chechkin, V.Ya. Chernyshenko, M.B. Dreval, I.E. Garkusha, G.P.Glazunov, L.I. Grigor'eva, D. Hartmann, C. Hidalgo, R. Koch, V.G. Konovalov, V.D. Kotsubanov, Ye.D. Kramskoi, A.E. Kulaga, A.V. Lozin, A.I. Lyssoivan, V.K.Mironov, I.N. Mysiura, R.O. Pavlichenko, V.K. Pashnev, V.S. Romanov, A.N. Shapoval, A.I. Skibenko, A.S. Slavnyi, E.L. Sorokovoy, Yu.S. Stadnik, V.S. Taran, V.I. Tereshin, V.S. Voitsenya. RF plasma production and heating below ion-cyclotron frequencies in Uragan torsatrons. Nucl. Fusion 51, 083036 (2011).
    https://doi.org/10.1088/0029-5515/51/8/083036
  17. O.S. Pavlichenko for the U-2M group. First results from the 'URAGAN-2M' torsatron. Plasma Phys. Control. Fusion 35, B223 (1993).
    https://doi.org/10.1088/0741-3335/35/SB/018
  18. V.V. Dolgopolov, K.N. Stepanov. Cerenkov absorption of Alfv’en waves and of fast magneto-acoustic waves in an inhomogeneous plasma. Nucl. Fusion. 5, 276 (1965).
    https://doi.org/10.1088/0029-5515/5/4/003
  19. J. Tataronis, W. Grossman. Decay of MHD waves by phase mixing. Z. Phys. 261, 203 (1973).
    https://doi.org/10.1007/BF01391913
  20. V.E. Moiseenko, Ye.D. Volkov, V.I. Tereshin, Yu.S. Stadnik. Alfv’en resonance heating in Uragan-2M torsatron. Plasma Phys. Reports 35, 828 (2009).
    https://doi.org/10.1134/S1063780X09100043
  21. V.I. Tereshin et al. First results of the renewed Uragan-2M torsatron. 35th EPS Conference on Plasma Phys. Hersonissos, 9–13 June 2008, ECA, 32, 1.061 (2008).
  22. G.G. Lesnyakov, D.P. Pogozhev, Yu.K. Kuznetsov et al. Studies of magnetic surfaces in the Uragan-2M torsatron. Contributed Papers of 23rd EPS Conf. on Contr. Fusion and Plasma Phys., Kiev, 20 C, Part II (b025), 547 (1996).
  23. V.V. Plyusnin, V.E. Moiseenko, A.I. Lysoivan, S.V. Kasilov, A.I. Zhukov, N.I. Nazarov, E.D. Volkov, K.N. Stepanov, O.S. Pavlichenko. ICRF plasma production and heating in the URAGAN-3M torsatron. International Atomic Energy Agency, Vienna (Austria), 95 (1997).
  24. V.E. Moiseenko, V.G. Kotenko, S.V. Chernitskiy et al. Research on stellarator–mirror fission–fusion hybrid. Plasma Phys. Control. Fusion 56, 094008 (2014).
    https://doi.org/10.1088/0741-3335/56/9/094008
  25. V.E. Moiseenko, O. ˚Agren. Stellarator-mirror hybrid with neutral beam injection. Fusion Science and Technology 63 (1T), 119 (2013).
    https://doi.org/10.13182/FST13-A16885
  26. V.G. Kotenko, V.E. Moiseenko, O. ˚Agren. Magnetic field of a combined plasma trap. AIP Conf. Proc. 1442, 167 (2012).
    https://doi.org/10.1063/1.4706866