• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 4, p.306-310

    Paper

Cherednychenko T.M.1, Garkusha I.E.1, Makhlai V.O.1, Solyakov D.G.1, Petrov Yu.V.1, Chebotarev V.V.1, Ladygina M.S.1, Marchenko A.K.1, Staltsov V.V.1, Yelisyeyev D.V.1, Astashynski V.M.2, Ananin S.I.2

1 Institute of Plasma Physics of the NSC KIPT
(1, Akademichna Str., Kharkiv 61108, Ukraine; e-mail: cherednichenko@kipt.kharkov.ua)
2 О.V. Lykov Heat and Mass Transfer Institute of the NAS of Belorus
(Мinsk, Belorus)

Multiplexing Creation of a Compression Zone in the Plasma Steam MPC under Different Initial Conditions

Section: Plasmas and Gases
Original Author's Text: English

Abstract: The analysis of fundamental properties of the compression zone in the self-compressed plasma streams generated by a magnetoplasma compressor (MPC) is carried out. The main attention is attended to the research of the dependences of basic plasma parameters in a compressed plasma stream depending on the initial conditions. It has been shown experimentally that the reduction of the initial concentration of a working gas leads to an increase of the plasma density in the compression zone. The detailed studies of the spatial distributions of currents in the plasma flows are fulfilled for different initial concentrations of a substance in the accelerating channel of MPC. Under the experiment conditions, it is found that a decrease of the initial concentration of a working gas leads to the displacement of the currents from the compression zone.

Key words: plasma dynamics, magnetoplasma compressor, compression zone.

References:

  1. O.I. Morozov. Introduction to Plasma Dynamics (Fizmalit, 2006) (in Russian).
  2. Yu.V. Skvortsov, V.S. Komel'kov, S.S. Tserevitynov et al. The structure of magnetic fields in a plasma jet with intrinsic currents. JTF, 34 (6), 965 (1964) (in Russian).
  3. A.K. Vinogradova, O.I. Morozov. Physics and Applications of Plasma Accelerators, edited by A.I. Morozov (Nauka i tekhnika, 1974), p. 103 (in Russian).
  4. V.V. Sidnev, Yu.V. Skvortzov, V.G. Solovyeva et al. Proc. of the XV Conf. on Phenomena in Ionized Gases (Minsk, 1981), p. 903.
  5. G.A. Diakonov, V.B. Tikhonov. Experimental studies of the influence of the geometry of an accelerating channel and the external magnetic field on modes of a plasma flow in a coaxial quasisteady plasma accelerator of the P-50A type. Phys. Plasm. 20(6), 533 (1994) (in Russian).
  6. A.M. Kozlov. Study of the near-electrode processes in quasi-steady plasma accelerators with impenetrable electrodes. Plasma Phys. Rep. 38 (1), 12 (2012).
    https://doi.org/10.1134/S1063780X11120051
  7. K.V. Bryshlinskyy, A.M. Zabrov, A.M. Kozlov, A.I. Morozov, V.V. Savel'ev. Numerical modeling of plasma flows in a coaxial quasisteady plasma accelerator. Phys. Plasm. 16 (2), 147 (1990) (in Russian).
  8. O.I. Morozov, L.S. Solov'ev. Questions of Plasma Theory, edited by M.A. Leontovich (Gosatomizdat, 1974), p. 3 (in Russian).
  9. I.E. Garkusha, V.V. Chebotarev, D.G. Solaykov, Yu.V. Petrov, M.S. Ladygina, A.K. Marchenko, V.V. Staltsov, D.V. Yelisyeyev. Compression zone of a magnetoplasma compressor as a source of extreme UV radiation. Plasma Phys. Rep. 38, 110 (2012).
    https://doi.org/10.1134/S1063780X12010047
  10. A.K. Marchenko, M.S. Ladygina, I.E. Garkusha, Yu.V. Petrov, D.G. Solyakov, T.N. Cherednichenko, V.A. Makhlaj, V.V. Chebotarev, V.V. Staltsov, D.V. Yelisyeyev, V.I. Krauz. Compression zone formation in the plasma streams generated by MPC facility operating the gases with sufficiently different masses. Problems of Atomic Science and Technology No. 6 (94), 83 (2014).
  11. A.I. Morozov. The acceleration of a plasma by a magnetic field. Zh. Eksp. Teor. Fiz. 32, 305 (1957).
  12. V.V. Chebotarev, I.E. Garkusha, V.S. Ladygina, A.K. Marchenko, Yu.V. Petrov, D.G. Solyakov, V.I. Tereshin, S.A. Trubchaninov, A.V. Tsarenko, A. Hassanein. Investigation of pinching discharges in MPC device operating with nitrogen and xenon gases. Czech. J. Phys. 56, 335 (2006).
    https://doi.org/10.1007/s10582-006-0219-y
  13. D.G. Solyakov. High-power plasma dynamic systems of quasi-stationary type in IPP KIPT: Results and prospects. Problems of Atomic Science and Technology No. 1 (95), 104 (2015).
  14. V.V. Chebotarev, T.N. Cherednychenko, D.V. Eliseev, I.E. Garkusha, A.N. Kozlov, N.V. Kulik, M.S. Ladygina, A.K. Marchenko, Ya.I. Morgal, Yu.V. Petrov, D.G. Solyakov, V.V. Staltsov. MHD characteristics of compression zone in plasma stream generated by MPC. Problems of Atomic Science and Technology No. 6 (82), 123 (2012).
  15. D.G. Solyakov, Yu.V. Petrov, I.E. Garkusha, V.V. Chebotarev, M.S. Ladygina, T.N. Cherednichenko, Ya.I. Morgal', N.V. Kulik, V.V. Stal'tsov, D.V. Eliseev. Formation of the compression zone in a plasma flow generated by a magnetoplasma compressor. Plasma Phys. Rep. 39, 986 (2013).
    https://doi.org/10.1134/S1063780X13110081