• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 4, p.299-305

    Paper

Sizhuk A.S.1, Yezhov S.M.2

1 Department of Radiophysics, Taras Shevchenko National University of Kyiv
(4-g, Academician Glushkov Ave., Kyiv 03022, Ukraine; e-mail: andrii.sizhuk@gmail.com)
2 Faculty of Physics, Taras Shevchenko National University of Kyiv
(2, Building 1, Academician Glushkov Ave., Kyiv 03022, Ukraine)

Application of the Generalized Absorptance for Accounting the Recoil and Doppler Effects

Section: Optics, Lasers, and Quantum Electronics
Original Author's Text: English

Abstract:  A method of calculation of the absorption coefficient in the terms of quantum optics with regard for the quantization of the electromagnetic field and the Doppler effect is presented. It is shown that the local value of the absorption coefficient non-linearly depends on the atomic density and initial intensity. The analytically derived results are demonstrated in graphs for the the local absorption coefficient as a function of the frequency. The relatively strong dependence of the absorptance on the path length of an optical light beam is caused by the interatomic coupling through the intermediary of an electromagnetic field. The splitting of the absorption line induced by the Doppler effect in the system placed between mirrors is demonstrated.

Key words: absorption coefficient, quantum optics, Doppler effect, commutation relation, approximate evaluation.

References:

  1. A. Sizhuk, S. Yezhov. Introducing the generalized absorptance for a gas with bound atomic states. Ukr. J. Phys. 62, 202 (2017).
    https://doi.org/10.15407/ujpe62.03.0202
  2. A.C. Kolb, H. Griem. Theory of line broadening in multiplet spectra. Phys. Rev. 111, 514 (1958).
    https://doi.org/10.1103/PhysRev.111.514
  3. D. Meiser, M.J. Holland. Steady-state superradiance with alkaline-earth-metal atoms. Phys. Rev. A 81, 033847 (2010.
    https://doi.org/10.1103/PhysRevA.81.033847
  4. L. Bellando, A. Gero, E. Akkermans, R. Kaiser. Cooperative effects and disorder: A scaling analysis of the spectrum of the effective atomic Hamiltonian. Phys. Rev. A 90, 06382 (2014).
    https://doi.org/10.1103/PhysRevA.90.063822
  5. M. Rouabah, R. Samaylova, Ph.W. Bachelard, R. Courteille, R. Kaiser, N. Piovella. Coherence effects in scattering order expansion of light by atomic clouds. J. Opt. Soc. Am. A 31, 1031 (2014).
    https://doi.org/10.1364/JOSAA.31.001031
  6. R. R¨ohlsberger, K. Schlage, B. Sahoo, S. Couet, R. R¨uffer. Collective Lamb shift in single-photon superradiance. Science 328, 1248 (2010).
    https://doi.org/10.1126/science.1187770
  7. J. Keaveney, A. Sargsyan, U. Krohn, I.G. Hughes, D. Sarkisyan, C.S. Adams. Cooperative Lamb shift in an atomic vapor layer of nanometer thickness. Phys. Rev. Lett. 108, 173601 (2012)
    https://doi.org/10.1103/PhysRevLett.108.173601
  8. S. Balik, A.L. Win, M.D. Havey, I.M. Sokolov, D.V. Kupriyanov. Near-resonance light scattering from a highdensity ultracold atomic Rb87 gas. Phys. Rev. A 87, 053817 (2013) .
    https://doi.org/10.1103/PhysRevA.87.053817
  9. Z. Meir, O. Schwartz, E. Shahmoon, D. Oron, R. Ozeri. Cooperative Lamb shift in a mesoscopic atomic array. Phys. Rev. Lett. 113, 193002 (2014).
    https://doi.org/10.1103/PhysRevLett.113.193002
  10. S. Jennewein, Y.R.P. Sortais, J.-J. Greffet, A. Browaeys. Propagation of light through small clouds of cold interacting atoms. Phys. Rev. A 94, 053828 (2016).
    https://doi.org/10.1103/PhysRevA.94.053828
  11. S.D. Jenkins, J. Ruostekoski, J. Javanainen, R. Bourgain, S. Jennewein, Y.R.P. Sortais, A. Browaeys. Optical resonance shifts in the fluorescence imaging of thermal and cold rubidium atomic gases. Phys. Rev. Lett. 116, 183601 (2016).
    https://doi.org/10.1103/PhysRevLett.116.183601
  12. S.L. Bromley, B. Zhu, M. Bishof, X. Zhang, T. Bothwell, J. Schachenmayer, T.L. Nicholson, R. Kaiser, S.F. Yelin, M.D. Lukin, A.M. Rey, J. Ye. Collective atomic scattering and motional effects in a dense coherent medium. Nature Commun. 7, 11039 (2016) .
    https://doi.org/10.1038/ncomms11039
  13. J.T. Manassah, B. Gross. The dynamical Lorentz shift in an extended optically dense superradiant amplifier. Optics Express 1, No. 6, 145 (1997).
    https://doi.org/10.1364/OE.1.000141
  14. T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A.V. Gorshkov, T. Pohl, M.D. Lukin, V. Vuletic. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57 (2012).
    https://doi.org/10.1038/nature11361
  15. V.S. Egorov, V.N. Lebedev, I.B. Mekhov, P.V. Moroshkin, I.A. Chekhonin, S.N. Bagayev. Coherent interaction of laser pulses in a resonant optically dense extended medium under the regime of strong field-matter coupling. Phys. Rev. A 69, 033804 (2004).
    https://doi.org/10.1103/PhysRevA.69.033804
  16. Marlan O. Scully, M. Zubairy Suhail. Quantum Optics (Cambridge Univ. Press, 2002) [ISBN: 978-0524235959].
  17. J.R. Klauder, E.C.G. Sudarshan. Fundamentals of Quantum Optics (Dover, 2006) [ISBN: 0-486-45008-2].
  18. E. Hecht. Optics (Addison-Wesley, 2002) [ISBN: 978-0805385663].
  19. M.S. Dresselhaus. Solid State Physics. Part II: Optical Properties of Solids. Course 6.732 Solid State Physics. MIT. http://web.mit.edu/course/6/6.732/www/6.732-pt2.pdf, 1999, (Retrieved 2015): 3.
  20. W.P. Schleich. Quantum Optics in Phase Space (WileyVCH, 2001) [ISBN: 978-3527294350].
    https://doi.org/10.1002/3527602976
  21. A.S. Sizhuk, C.H.R. Ooi. The conservative system of N atoms coupled with one photon. Annals of Physics 360, 207 (2015).
    https://doi.org/10.1016/j.aop.2015.05.009
  22. C. Mahaux, H.A. Weidenm¨uller. Shell-Model Approach to Nuclear Reactions (North-Holland, 1969) [ISBN: 9780720401448].