• Українська
  • English

< | Next >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 4, p.349-361

    Paper

Teslenko V.I.

Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14b, Metrolohichna Str., Kyiv 03680, Ukraine; e-mail: vtes@bitp.kiev.ua)

Fourth-Order Differential Equation for a Two-Stage Absorbing Markov Chain with a Stochastic Forward Transition Probability

Section: General Problems of Theoretical Physics
Original Author's Text:  English

Abstract: The problem of averaging the kinetics of a two-stage absorbing Markov chain over random fluctuations in its forward transition probability approximated by the symmetric dichotomous stochastic process is solved exactly. It is shown that the temporal behavior of the population of chain’s transient state obeys a fourth-order differential equation with the tetra-exponential form of a solution given the finite frequency and mean amplitude of fluctuations. In the limit of frequent fluctuations, this tetra-exponential solution reduces to a simple bi-exponential form typical of the deterministic two-stage decay process lacking fluctuations in its transition probability. Rather, in the limit of rare fluctuations, the tetra-exponential solution, while simplifying to the tri- and bi-exponential solutions, becomes specific both for the low amplitude and the resonance amplitude fluctuations, respectively. Furthermore, there is a stochastic resonance point, where the forward transition probability is in resonance with the mean fluctuation amplitude, whereas the backward transition probability, decay transition probability, and fluctuation frequency are negligibly small. In result, the stochastic immobilization of the two-stage absorbing Markov chain in its initial state occurs at this point.

Key words:  nonequilibrium systems, nonstationary kinetics, fluctuation phenomena, stochastic processes, absorbing Markov chain, ordinary differential equations.

References:

  1. R.A. Alberty, W.G. Miller. Integrated rate equations for isotopic exchange in simple reversible reactions. J. Chem. Phys. 26, 1231 (1957).
    https://doi.org/10.1063/1.1743498
  2. R.K. Bohn, K.H. Casleton, Y.V.C. Rao, G.W. Flynn. Vibrational energy transfer in laser-excited carbonic difluoride. Infrared fluorescence from the intermediate mode 4. J. Phys. Chem. 86, 736 (1982).
    https://doi.org/10.1021/j100394a030
  3. A.N. Macpherson, J.B. Arellano, N.J. Fraser, R.J. Cogdell, T. Gillbro. Efficient energy transfer from the carotenoid S(2) state in a photosynthetic light-harvesting complex. Biophys. J. 80, 923 (2001).
    https://doi.org/10.1016/S0006-3495(01)76071-7
  4. N. Kanamaru, J. Tanaka. Nanosecond laser photolysis of n-methylindole in acetonitrile. Bull. Chem. Soc. Jpn. 59, 569 (1976).
    https://doi.org/10.1246/bcsj.59.569
  5. N. Wermuth. International Encyclopedia of Statistical Science, edited by M. Lovric (Springer, 2011), part 7, p. 618.
  6. J.R. Alcala, E. Gratton, F.G. Prendergast. Fluorescence lifetime distributions in proteins. Biophys. J. 51, 597 (1987).
    https://doi.org/10.1016/S0006-3495(87)83384-2
  7. A.I. Burshtein. Non-Markovian theories of transfer reactions in luminescence and chemiluminescence and photoand electrochemistry. Adv. Chem. Phys., edited by S.A. Rice (Wiley, 2004), 129, p. 105.
  8. E.J. Crampin, S. Schnell, P.E. McSharry. Mathematical and computational techniques to deduce complex biochemical reaction mechanisms. Prog. Biophys. Mol. Biol. 86, 77 (2004).
    https://doi.org/10.1016/j.pbiomolbio.2004.04.002
  9. K. Banerjee, K. Bhattacharyya. Enzyme efficiency: An open reaction system perspective. J. Chem. Phys. 143, 235102 (2015).
    https://doi.org/10.1063/1.4937792
  10. M.J. Lawson, L. Petzold, A. Hellander. Accuracy of the Michaelis–Menten approximation when analysing effects of molecular noise. J. R. Soc. Interface 12, 20150054 (2015).
    https://doi.org/10.1098/rsif.2015.0054
  11. P. Suppes. Stimulus – response theory of finite automata. J. Math. Psychol. 6, 327 (1969).
    https://doi.org/10.1016/0022-2496(69)90010-8
  12. W.M.L. Holcombe. Algebraic Automata Theory (Cambridge Univ. Press, 1982) [ISBN: 0521604923].
    https://doi.org/10.1017/CBO9780511525889
  13. D.L. Andrews, D.S. Bradshaw, M.M. Coles. Perturbation theory and the two-level approximation: A corollary and critique. Chem. Phys. Lett. 503, 153 (2011).
    https://doi.org/10.1016/j.cplett.2010.12.055
  14. C. Csajka, D. Verota. Pharmacokinetic-pharmacodynamic modelling: history and perspectives. J. Pharmacokin. Pharmacodyn. 33, 227 (2006).
    https://doi.org/10.1007/s10928-005-9002-0
  15. V.I. Teslenko, O.L. Kapitanchuk, Y. Zhao. Controlling cooperativity of a metastable open system coupled weakly to a noisy environment. Chin. Phys. B 24, 028702 (2015).
    https://doi.org/10.1088/1674-1056/24/2/028702
  16. G.H. Weiss, J. Masoliver. Statistics of dwell times in a reaction with randomly fluctuating rates. Physica A 296, 75 (2001).
    https://doi.org/10.1016/S0378-4371(01)00153-4
  17. E.G. Petrov, V.I. Teslenko. Kinetic equations for a quantum dynamical system interacting with a thermal reservoir and a random field. Theor. Math. Phys. 84, 986 (1990).
    https://doi.org/10.1007/BF01017358
  18. V.I. Teslenko, E.G. Petrov, A. Verkhratsky, O.A. Krishtal. Phys. Rev. Lett. 104, 178105 (2010).
    https://doi.org/10.1103/PhysRevLett.104.178105
  19. E.G. Petrov. Coarse-grained kinetic equations for quantum systems. Eur. Phys. J. Spec. Top. 216, 205 (2013).
    https://doi.org/10.1140/epjst/e2013-01744-0
  20. V.I. Teslenko, O.L. Kapitanchuk. Theory of kinetics of multistep ligand–receptor assembly in dissipating and fluctuating environments. Int. J. Mod. Phys. B 27, 1350169 (2013).
    https://doi.org/10.1142/S0217979213501695
  21. O.L. Kapitanchuk, O.M. Marchenko, V.I. Teslenko. Hysteresis of transient populations in absorbing-state systems. Chem. Phys. 472, 249 (2016).
    https://doi.org/10.1016/j.chemphys.2016.03.007
  22. A. Barchielli, M. Gregoratti. Quantum continuous measurements: The stochastic Schrodinger equations and the spectrum of the output. Quant. Measur. Quant. Metrol. 1, 34 (2013).
    https://doi.org/10.2478/qmetro-2013-0005
  23. C.W. Gardiner, P. Zoller. Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics (Springer, 2004) [ISBN 978-3-540-22301-6].
  24. T. Holstein. Studies of polaron motion: Part II. The "small" polaron. Ann. Phys. 8, 343 (1959).
    https://doi.org/10.1016/0003-4916(59)90003-X
  25. E.G. Petrov, V.I. Teslenko. Kinetics of quasi-isoenergetic transition processes in biological macromolecules. Chem. Phys. 375, 243 (2010).
    https://doi.org/10.1016/j.chemphys.2010.05.029
  26. V.I. Teslenko, O.L. Kapitanchuk. Dynamics of transient processes in irreversible kinetic models. Ukr. J. Phys. 57, 573 (2012).
  27. V.I. Teslenko, E.G. Petrov. Regularization of environmentinduced transitions in nanoscopic systems. Ukr. J. Phys. 61, 627 (2016).
    https://doi.org/10.15407/ujpe61.07.0627
  28. E. Petrov, V. Teslenko. Kinetics framework for nanoscale description of environment-induced transition processes in biomolecular structures. In Nanobiophysics: Fundamentals and Applications, edited by V.A. Karachevtsev (Pan Stanford Publishing, 2015), Chapter 9, p. 267.
    https://doi.org/10.1201/b20480-10
  29. N.G. van Kampen. Stochastic Processes in Physics and Chemistry (North Holland, 1981) [ISBN: 0-444-89345-0].
  30. J.C. Anderson. Quantum Monte Carlo: Origins, Development, Applications (Oxford Univ. Press, 2007) [ISBN: 978-0-19-531010-8].
  31. S.E. Jackson. How do small single-domain proteins fold? Fold. Des. 3, R81 (1998).
    https://doi.org/10.1016/S1359-0278(98)00033-9
  32. M. Bixon. Polymer dynamics in solution. Ann. Rev. Phys. Chem. 27, 65 (1976).
    https://doi.org/10.1146/annurev.pc.27.100176.000433
  33. V.E. Shapiro, V.M. Loginov. "Formulae of differentiation" and their use for solving stochastic equations. Physica A 91, 563 (1978).
    https://doi.org/10.1016/0378-4371(78)90198-X
  34. V.M. Loginov. Simple mathematical tool for statistical description of dynamical systems under random actions. Pt. I. Acta Physica Polonica B 27, 693 (1996).
  35. H. Frauenfelder, P.G. Wolynes. Rate theories and puzzles of hemoprotein kinetics. Science 229, 337 (1985).
    https://doi.org/10.1126/science.4012322
  36. A. Nitzan, J. Ross. A comment on fluctuations around nonequilibrium steady states. J. Stat. Phys. 10, 379 (1974).
    https://doi.org/10.1007/BF01008800
  37. I.A. Goychuk, E. Petrov, V. May. Bridge-assisted electron transfer driven by dichotomically fluctuating tunneling coupling. J. Chem. Phys. 103, 4937 (1995).
    https://doi.org/10.1063/1.470630
  38. A.M. Berezhkowsky, G.H. Weiss. Detailed description of a two-state non-Markov system. Physica A 303, 1 (2002).
    https://doi.org/10.1016/S0378-4371(01)00431-9
  39. A.M. Berezhkowsky, A. Szabo, G.H. Weiss. Theory of single-molecule fluorescence spectroscopy of two-state systems. J. Chem. Phys. 110, 9145 (1999).
    https://doi.org/10.1063/1.478836
  40. A. Hurwitz. Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt. Math. Ann. 46, 273 (1895).
    https://doi.org/10.1007/BF01446812
  41. D. Jacewicz, A. Lapi’nska, A. D¸abrowska, L. Chmurzy’nski. A stopped-flow study on the kinetics and mechanism of CO2 uptake by the cis-[Cr(1,10-phenanthroline)2(OH2)2] 3+ complex ion. Transition Met. Chem. 31, 111 (2006).
    https://doi.org/10.1007/s11243-005-6372-5
  42. D. Jacewicz, M. Szkatu la, A. Chylewska, A. D¸abrowska, M. Wo’zniak, L. Chmurzy’nski. Coordinate cis-[Cr(C2O4)(pm)(OH2)2] + cation as molecular biosensor of pyruvate's protective activity against hydrogen peroxide mediated cytotoxity. Sensors 8, 4487 (2008).
    https://doi.org/10.3390/s8084487
  43. I.C. Kleppe, H.P.C. Robinson. Determining the activation time course of synaptic AMPA receptors from openings of colocalized NMDA receptors. Biophys. J. 77, 1418 (1999).
    https://doi.org/10.1016/S0006-3495(99)76990-0
  44. E.A. Moelwyn-Hughes. Physical Chemistry (Cambridge Univ. Press, 1940), Appendix 9, p. 633.
  45. S. Sergeyev. Activated polarization pulling and decorrelation of signal and pump states of polarization in fiber Raman amplifier. Opt. Express 19, 24268 (2011).
    https://doi.org/10.1364/OE.19.024268
  46. M.F. Bukhori, S. Roy, A. Asenov. Simulation of statistical aspects of charge trapping and related degradation in bulk MOSFETs in the presence of random discrete dopants. IEEE Trans. Electron Devices 57, 795 (2010).
    https://doi.org/10.1109/TED.2010.2041859
  47. T. Wellens, V. Shatochin, A. Buchleitner. Stochastic resonance. Rep. Prog. Phys. 67, 45 (2004).
    https://doi.org/10.1088/0034-4885/67/1/R02
  48. D.G. Luchinsky, P.V.E. McClintock. Irreversibility of classical fluctuations studied in analogue electrical circuits. Nature 389, 463 (1997).
    https://doi.org/10.1038/38963
  49. M.I. Dykman, G.P. Golubev, I.Kh. Kaufman, D.G. Luchinsky, P.V.E. McClintock, E.A. Zhukov. Noise-enhanced optical heterodyning in an all-optical bistable system. Appl. Phys. Lett. 67, 308 (1995).
    https://doi.org/10.1063/1.115427
  50. M.I. Dykman, P.M. Hunt. Large fluctuations and optimal paths in chemical kinetics. J. Chem. Phys. 100, 5737 (1994).
    https://doi.org/10.1063/1.467139