• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 3, p.249-255
https://doi.org/10.15407/ujpe62.03.0909    Paper

Golovanova V.V., Nazarchuk B.V., Semenov A.K., Postnyi A.V., Golovanov V.V.

Center of Innovative Technologies, K.D. Ushynskyi South-Ukrainian National Pedagogical University
(26, Staroportofrankivs’ka Str., Odesa 65020, Ukraine; e-mail: sealolablue@yahoo.com)

Gas Detection in Humid Atmosphere Using In2O3- and SnO2-Based Sensors

Section: Solid Matter
Original Author's Text: Ukrainian

Abstract: Interaction of SnO2- and In2O3-based sensors with the reducing CO and CH4 gases in a humid atmosphere has been studied. The atmospheric moisture is shown to have a significant influence on the sensor conductivity, as well as on the correlation between the sensor sensitivity and catalytic activity. The results obtained are analogous for various oxides and reducing gases. The mechanism of interaction of a reducing gas with the oxide surface in the humid environment is proposed. Using the calculations carried out in the framework of the density functional theory, two different types of hydroxyl radicals on the oxide surface are identified. They differently affect the conductivity and sensitivity of the sensor at its interaction with reducing gases. The proposed model is experimentally confirmed by joint measurements of the sensitivity and catalytic activity of studied oxides.

Key words: gas sensors, tin dioxide, indium oxide, methane, carbonic oxide, moisture, catalytic activity, density functional theory.

References:

  1. D.E. Williams. Semiconducting oxides as gas-sensitive resistors. Sensor. Actuat. B 57, 1 (1999).
    https://doi.org/10.1016/S0925-4005(99)00133-1
  2. G. Eranna, B.C. Joshi, D.P. Runthala, R.P. Gupta. Oxide materials for development of integrated gas sensors – A comprehensive review. Crit. Rev. Solid State Mater. Sci. 29 (3-4), 111 (2004).
    https://doi.org/10.1080/10408430490888977
  3. G. Korotcenkov, V. Brinzari, A. Cerneavschi, M. Ivanov, A. Cornet, J. Morante, A. Cabot, J. Arbiol. In2O3 films deposited by spray pyrolysis: gas response to reducing (CO, H2) gases. Sensor. Actuat. B 98, 122 (2004).
    https://doi.org/10.1016/j.snb.2003.09.009
  4. E. Comini, C. Baratto, I. Concina, G. Faglia, M. Falasconi, M. Ferroni, V. Galstyan, E. Gobbi, A. Ponzoni, A. Vomiero, D. Zappa, V. Sberveglieri, G. Sberveglieri. Metal oxide nanoscience and nanotechnology for chemical sensors. Sensor. Actuat. B 179, 3 (2013).
    https://doi.org/10.1016/j.snb.2012.10.027
  5. G. Korotcenkov, V. Brinzari, B.K. Cho. In2O3- and SnO2- based thin film ozone sensors: Fundamentals. J. Sensors 2016, 1 (2016).
    https://doi.org/10.1155/2016/3816094
  6. T. Sahm, A. Gurlo, N. Barsan, U. Weimar. Properties of indium oxide semiconducting sensors deposited by different techniques. Part. Sci. Technol. 24, 441 (2006).
    https://doi.org/10.1080/02726350600934739
  7. G. Korotchenkov, V. Brinzari, Y. Boris, M. Ivanov, J. Schwank, J. Morante. Influence of surface Pd doping on gas sensing characteristics of SnO2 thin films deposited by spray pyrolysis. Thin Solid Films 436, 119 (2003).
    https://doi.org/10.1016/S0040-6090(03)00506-6
  8. W G¨opel. Chemisorption and charge transfer at ionic semiconductor surfaces: Implications in designing gas sensors. Prog. Surf. Sci. 20, 9 (1985).
    https://doi.org/10.1016/0079-6816(85)90004-8
  9. V. Lantto. Gas Sensors (Springer, 1992) [ISBN: 978-94-010-5214-6].
  10. G. Korotcenkov, V. Brinzari, M. DiBattista, J. Schwank, A. Vasiliev. Peculiarities of SnO2 thin film deposition by spray pyrolysis for gas sensor application. Sensor. Actuat. B 77 244 (2001).
    https://doi.org/10.1016/S0925-4005(01)00741-91
  11. V. Brinzari, G. Korotcenkov, J. Schwank. Optimization of thin-film gas sensors for environmental monitoring through theoretical modeling. Proc. SPIE 3857, 186 (1999).
    https://doi.org/10.1117/12.370286
  12. D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).
    https://doi.org/10.1103/PhysRevB.41.7892
  13. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne. First principles methods using CASTEP. Z. Kristallogr. 220, 567 (2005).
    https://doi.org/10.1524/zkri.220.5.567.65075
  14. J.P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
    https://doi.org/10.1103/PhysRevLett.77.3865
  15. V. Golovanov, M.A. M¨aki-Jaskari, T.T. Rantala, G. Korotcenkov, V. Brinzari, A. Cornet, J. Morante. Experimental and theoretical studies of indium oxide gas sensors fabricated by spray pyrolysis. Sensor. Actuat. B 106, 563 (2005).
    https://doi.org/10.1016/j.snb.2004.07.026
  16. T.V. Belysheva, G.N. Gerasimov, V.F. Gromov, E.Yu. Spiridonova, L.I. Trakhtenberg. Conductivity of SnO2–In2O3 nanocrystalline composite films. Rus. J. Phys. Chem. A 84, 1554 (2010).
    https://doi.org/10.1134/S0036024410090207
  17. M. Egashira, M. Nakashima, S. Kawasumi. Temperature programmed desorption study of water adsorbed on metal oxides. 2. Tin oxide surfaces. J. Phys. Chem. 85, 4125 (1981).
    https://doi.org/10.1021/j150626a034
  18. N. Barsan, U. Weimar. Conduction model of metal oxide gas sensors. J. Electroceram. 7, 143 (2001).
    https://doi.org/10.1023/A:1014405811371
  19. D.F. Cox, T.B. Fryberger, S. Semancik. Oxygen vacancies and defect electronic states on the SnO2(110)-1 × 1 surface. Phys. Rev. B 38, 2072 (1988).
    https://doi.org/10.1103/PhysRevB.38.2072
  20. V. Brinzari, G. Korotcenkov, V. Golovanov, J. Schwank, V. Lantto, S. Saukko. Morphological rank of nanoscale tin dioxide films deposited by spray pyrolysis from SnCl4·5H2O water solution. Thin Solid Films 408, 51 (2002).
    https://doi.org/10.1016/S0040-6090(02)00086-X