• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 3, p.217-229
https://doi.org/10.15407/ujpe62.03.0217    Paper

Lev B.I., Tymchyshyn V.B., Zagorodny A.G.

Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14b, Metrolohichna Str., Kyiv 03680, Ukraine; e-mail: blev@bitp.kiev.ua, yu.binkukoku@gmail.com, azagorodny@bitp.kiev.ua)

Potential Energy Analysis for a System of Interacting Particles Arranged in a Bravais Lattice

Section: Plasmas and Gases
Original Author's Text: Ukrainian/English

Abstract: We propose a method to calculate the type of a lattice formed by grains in dusty plasma and estimate its potential energy. Basically, this task is complicated by the interparticle potential that appertains to “catastrophic potentials”. This kind of potentials needs special approaches to avoid divergences during potential energy calculations. In the current contribution, we will develop all the necessary modifications to appropriate methods. It will be shown that the obtained potential energy expression can be used to determine lattice parameters and these parameters comply to known experimental data.

Key words:  Coulomb potential, dusty plasma, potential energy, Bravais lattice.

References:

  1. V.E. Fortov, A.V. Ivlev, S.A. Khrapak, A.G. Khrapak, G.E. Morfill. Complex (dusty) plasma: Current status, open issues, perspectives. Phys. Rep. 421, 1 (2005).
    https://doi.org/10.1016/j.physrep.2005.08.007
  2. H. L¨owen. Melting, freezing and colloidal suspensions. Phys. Rep. 237, 249 (1994).
    https://doi.org/10.1016/0370-1573(94)90017-5
  3. G.E. Morfill, H.M. Thomas, U. Konopka, M. Zuzic. The plasma condensation: Liquid and crystalline plasmas. Phys. Plasmas 6, 1769 (1999).
    https://doi.org/10.1063/1.873435
  4. Y. Bilotsky. On calculation of lattice energy in spatially confined domains. Advances in Materials Science and Applications 2, (4), 127 (2013).
    https://doi.org/10.5963/AMSA0204001
  5. L.N. Kantorovich, I.I. Tupitsyn. Coulomb potential inside a large finite crystal. J. Phys.: Condens. Matter 11, 6159 (1999).
    https://doi.org/10.1088/0953-8984/11/32/307
  6. L.P. Buhler, R.E. Crandal. On the convergence problem for lattice sums. J. Phys. A: Math. Gen. 23, 2523 (1990).
    https://doi.org/10.1088/0305-4470/23/12/029
  7. D. Borwein, J.M. Borwein, R. Shail, I.J. Zucker. Energy of static electron lattices. J. Phys. A: Math. Gen. 20, 1519 (1988).
    https://doi.org/10.1088/0305-4470/21/7/015
  8. T.R.S. Prasanna. Physical meaning of the Ewald sum method. Phil. Magaz. Lett. 92, No. 1, 29 (2012).
    https://doi.org/10.1080/09500839.2011.622725
  9. Y. Bilotsky, M. Gasik. A new approach for modelling lattice energy in finite crystal domains. Phys.: Conf. Ser. 633, 012014 (2015).
    https://doi.org/10.1088/1742-6596/633/1/012014
  10. D.M. Heyes, A.C. Bra’nka. Lattice summations for spread out particles: Applications to neutral and charged systems. J. Chem. Phys. 138, 034504 (2013).
    https://doi.org/10.1063/1.4775367
  11. B.I. Lev, V.P. Ostroukh, V.B. Tymchyshyn, A.G. Zagorodny. Statistical description of the system electrons on the liquid helium surface. Eur. Phys. J. B 87:253 (2014).
    https://doi.org/10.1140/epjb/e2014-50303-2
  12. D. Ruelle. Statistical Mechanics: Rigorous Results (Benjamin, 1969).
  13. A. Isihara. Statistical Mechanics (Academic Press, 1971).
  14. K. Huang. Statistical Mechanics (Wiley, 1963).
  15. R. Baxter. Exactly Solved Models in Statistical Mechanics (Academic Press, 1982).
  16. B. Klumov, G. Joyce, C. R¨ath, P. Huber, H. Thomas, G.E. Morfill, V. Molotkov, V. Fortov. Structural properties of 3D complex plasmas under microgravity conditions. Europhys. Lett. 92 (1), 15003 (2010).
    https://doi.org/10.1209/0295-5075/92/15003
  17. B.A. Klumov, G.E. Morfill. Structural properties of complex (dusty) plasma upon crystallization and melting. JETP Lett. 90 (6), 444 (2009).
    https://doi.org/10.1134/S002136400918009X
  18. B.I. Lev, A.G. Zagorodny. Structure formation in system of Brownian particle in dusty plasma. Phys. Lett. A 373, 1101 (2009).
    https://doi.org/10.1016/j.physleta.2009.01.044
  19. B.I. Lev, V.B. Tymchyshyn, A.G. Zagorodny. Brownian particle in non-equilibrium plasma. Condens. Phys. 12, 593 (2009).
    https://doi.org/10.5488/CMP.12.4.593
  20. H. Thomas, G.E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, D. Mohlmann. Plasma crystal: Coulomb crystallization in a dusty plasma. Phys. Rev. Lett. 73, 652 (1994).
    https://doi.org/10.1103/PhysRevLett.73.652
  21. P. Ewal . Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 369 (3), 253 (1921).
    https://doi.org/10.1002/andp.19213690304
  22. J.H. Chu, Lin I. Direct observation of Coulomb crystals and liquids in strongly coupled rf dusty plasmas. Phys. Rev. Lett. 72, 4009 (1994).
    https://doi.org/10.1103/PhysRevLett.72.4009
  23. A. Melzer, T. Trottenberg, A. Piel. Experimental determination of the charge on dust particles forming Coulomb lattices. Phys. Lett. A 191, 301 (1994).
    https://doi.org/10.1016/0375-9601(94)90144-9
  24. S.V. Vladimirov, S.A. Khrapak, M. Chaudhuri, G.E. Morfill. Superfluidlike motion of an absorbing body in a collisional plasma. Phys. Rev. Lett. 100, 055002 (2008).
    https://doi.org/10.1103/PhysRevLett.100.055002
  25. H. Ikezi. Coulomb solid of small particles in plasmas. Phys. Fluids 29, 1764 (1986).
    https://doi.org/10.1063/1.865653
  26. A. Melzer, A. Homann, A. Piel. Experimental investigation of the melting transition of the plasma crystal. Phys. Rev. E 53, 2757 (1996).
    https://doi.org/10.1103/PhysRevE.53.2757
  27. A.G. Sitenko, A.G. Zagrodny, V.N. Tsytovich. Fluctuation phenomena in dusty plasmas. AIP Conf. Proc. 345, 311 (1995).
    https://doi.org/10.1063/1.49020
  28. S.A. Brazovsky. Phase transition of an isotropic system to a nonuniform state. Sov. Phys. JETP 41 (1), 85 (1975).
  29. B.I. Lev, H. Yokoyama. Selection of states and fluctuation under the first order phase transitions. Int. J. Mod. Phys. B 17, 4913 (2003) .
    https://doi.org/10.1142/S021797920302274X
  30. H. Totsuji, T. Kishimot o, C. Totsuji. Structure of confined Yukawa system (dusty plasma). Phys. Rev. Lett. 78, 3113 (1997).
    https://doi.org/10.1103/PhysRevLett.78.3113
  31. I.S. Gradshteyn, I.M. Ryzhik. Tables of Integrals, Series, and Products (Academic Press, 2007).
  32. A. Erd’elyi, W. Magnus, F. Oberhettinger, F. G. Tricomi. Higher Transcendental Functions (Krieger, 1981), Vol. 2.
  33. R. Bellman. Introduction to Matrix Analysis (Society for Industrial and Applied Mathematics, 1970).
  34. R. Bellman. A Brief Introduction to Theta Functions (Holt, Rinehart and Winston, 1961).
  35. M. Chiani, D. Dardari, M.K. Simon. New exponential bounds and approximations for the computation of error probability in fading channels. IEEE Transactions on Wireless Communications 4 (2), 840 (2003).
    https://doi.org/10.1109/TWC.2003.814350
  36. C. Meyer. Matrix Analysis and Applied Linear Algebra (SIAM, 2000).
    https://doi.org/10.1137/1.9780898719512
  37. M. Abramowitz, I. Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1974).
  38. B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, M. Karplus. HARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187 (1983).
    https://doi.org/10.1002/jcc.540040211
  39. T. Darden, D. York, L. Pederson. Particle mesh Ewald: An · log() method for Ewald sums in large systems. J. Chem. Phys. 98, 10089 (1993) .
    https://doi.org/10.1063/1.464397
  40. B. Nijboer, E. De Wette. On the calculation of lattice sums. Physica 23, 309 (1957).
    https://doi.org/10.1016/S0031-8914(57)92124-9
  41. J. Kolafa, J. Perram. Cutoff errors in the Ewald summation formulae for point charge systems. Mol. Simulation 9, 351 (1992).
    https://doi.org/10.1080/08927029208049126
  42. J. Perram, H. Petersen, S. De Leeuw. An algorithm for the simulation of condensed matter which grows as the 3/2 power of the number of particles. Mol. Phys. 65, 875 (1988).
    https://doi.org/10.1080/00268978800101471
  43. Z. Rycerz, P. Jacobs. Ewald summation in the molecular dynamics simulation of large ionic systems. Mol. Simulation 8, 197 (1992).
    https://doi.org/10.1080/08927029208022476
  44. W. Smith. FORTRAN code for the Ewald summation method. Information Quarterly for Computer Simulation of Condensed Phases 21, 37 (1986).
  45. D. York, W. Yang. The fast Fourier Poisson method for calculating Ewald sums. J. Chem. Phys. 101, 3298 (1994).
    https://doi.org/10.1063/1.467576