• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 3, p.202-207
https://doi.org/10.15407/ujpe62.03.0202    Paper

Sizhuk A.S.1, Yezhov S.M.2

1 Department of Radiophysics, Taras Shevchenko National University of Kyiv
(4-g, Academician Glushkov Ave., Kyiv 03022, Ukraine; e-mail: andrii.sizhuk@gmail.com)
2 Faculty of Physics, Taras Shevchenko National University of Kyiv
(2, Building 1, Academician Glushkov Ave., Kyiv 03022, Ukraine)

Introducing the Generalized Absorptance for a Gas with Bound Atomic States

Section: Optics, lasers, and quantum electronics
Original Author's Text: English

Abstract:  The quantum optical theory of absorption/reemission properties of a system of interacting atoms is discussed. The calculation method of the absorption coefficient is developed with regard for the quantization of field, thermal atomic motion, Doppler effect, and the model interaction between atoms. It is shown that the formulation of the absorption coefficient in the quantum optical context is based on the commutation relation between the operators of electric field and intensity. The revealed non-linear dependence of the absorption coefficient on the atomic density, even in the case of negligible binary interaction, can be referred to a certain kind of quantum-optic collective effects.

Key words: absorption coefficient, quantum optics, Doppler effect, commutation relation, many-body interaction.

References:

  1. P.W. Anderson. Pressure broadening in the microwave and infra-red regions. Phys. Rev. 76, 647 (1949).
    https://doi.org/10.1103/PhysRev.76.647
  2. D. Meiser, M.J. Holland. Steady-state superradiance with alkaline-earth-metal atoms. Phys. Rev. A 81, 033847 (2010).
    https://doi.org/10.1103/PhysRevA.81.033847
  3. L. Bellando, A. Gero, E. Akkermans, R. Kaiser. Cooperative effects and disorder: A scaling analysis of the spectrum of the effective atomic Hamiltonian. Phys. Rev. A 90, 06382 (2014).
    https://doi.org/10.1103/PhysRevA.90.063822
  4. M. Rouabah, R. Samaylova, Ph.W. Bachelard, R. Courteille, R. Kaiser, N. Piovella. Coherence effects in scattering order expansion of light by atomic clouds. J. Opt. Soc. Am. A 31, 1031 (2014).
    https://doi.org/10.1364/JOSAA.31.001031
  5. A.C. Kolb, H. Griem. Theory of line broadening in multiplet spectra. Phys. Rev. 111, 514 (1958).
    https://doi.org/10.1103/PhysRev.111.514
  6. F.T. Arecchi, R. Bonifacio. Theory of optical maser amplifiers. IEEE J. Quantum Electron. 1, 169 (1965).
    https://doi.org/10.1109/JQE.1965.1072212
  7. C. Mahaux, H.A. Weidenm¨uller. Shell-Model Approach to Nuclear Reactions (North-Holland, 1969).
  8. W. Schleich. Quantum Optics in Phase Space (WileyVCH, 2001) [ISBN: 978-3-527-80255-5].
    https://doi.org/10.1002/3527602976
  9. A.S. Sizhuk, R.O. Ooi. The conservative system of atoms coupled with one photon. Ann. of Phys. 360, 207 (2015).
    https://doi.org/10.1016/j.aop.2015.05.009
  10. R. R¨ohlsberger, K. Schlage, B. Sahoo, S. Couet, R. R¨uffer. Collective Lamb shift in single-photon superradiance. Science 328, 1248 (2010).
    https://doi.org/10.1126/science.1187770
  11. J. Keaveney, A. Sargsyan, U. Krohn, I.G. Hughes, D. Sarkisyan, C.S. Adams. Cooperative Lamb shift in an atomic vapor layer of nanometer thickness. Phys. Rev. Lett. 108, 173601 (2012).
    https://doi.org/10.1103/PhysRevLett.108.173601
  12. S. Balik, A.L. Win, M.D. Havey, I.M. Sokolov, D.V. Kupriyanov. Near-resonance light scattering from a highdensity ultracold atomic Rb87 gas. Phys. Rev. A 87, 053817 (2013).
    https://doi.org/10.1103/PhysRevA.87.053817
  13. Z. Meir, O. Schwartz, E. Shahmoon, D. Oron, R. Ozeri. Cooperative lamb shift in a mesoscopic atomic array. Phys. Rev. Lett. 113, 193002 (2014).
    https://doi.org/10.1103/PhysRevLett.113.193002
  14. S. Jennewein, Y.R.P. Sortais, J.-J. Greffet, A. Browaeys. Propagation of light through small clouds of cold interacting atoms. Phys. Rev. A 94, 053828 (2016).
    https://doi.org/10.1103/PhysRevA.94.053828
  15. S.D. Jenkins, J. Ruostekoski, J. Javanainen, R. Bourgain, S. Jennewein, Y.R.P. Sortais, A. Browaeys. Optical resonance shifts in the fluorescence imaging of thermal and cold rubidium atomic gases. Phys. Rev. Lett. 116, 183601 (2016).
    https://doi.org/10.1103/PhysRevLett.116.183601
  16. Marlan O. Scully, M. Zubairy Suhail. Quantum Optics (Cambridge Univ. Press, 2002) [ISBN: 978-0524235959].
  17. L.D. Landau, E.M. Lifshitz. The Classical Theory of Fields (Elsevier, 2005).
  18. J.R. Klauder, E.C.G. Sudarshan. Fundamentals of Quantum Optics (Dover, 2006).