• Українська
  • English

< | Next >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 3, p.271-282
https://doi.org/10.15407/ujpe62.03.0271    Paper

Vakhnenko O. O.

Bogolyubov Institute for Theoretical Physics
(14b, Metrologichna Str., Kyiv 03680, Ukraine; e-mail: vakhnenko@bitp.kiev.ua)

Distinctive Features Of The Integrable Nonlinear Schrodinger System On A Ribbon Of Triangular Lattice

Section: General Problems of Theoretical Physics
Original Author's Text:  English

Abstract: The dynamics of an integrable nonlinear Schr¨odinger system on a triangular-lattice ribbon is shown to be critical against the value of background parameter regulated by the limiting values of concomitant fields. Namely at the critical point, the number of basic field variables is reduced by half, and the Poisson structure of the system becomes degenerate. On the other hand, outside the critical point, the form of this Poisson structure turns out to be an essentially nonstandard one, and the meaningful procedure of its standardization leads inevitably to the breaking of the mutual symmetry between the standardized basic subsystems. There are two possible realizations of such an asymmetric standardization, each giving rise to a total suppression of field amplitudes in one of the standardized basic subsystems at the critical value of background parameter. In the undercritical region, the standardized basic field amplitudes acquire the meaning of probability amplitudes of some nonequivalent intracell bright excitations, whereas such an interpretation in the overcritical region is proven to be incorrect. A proper analysis shows that the overcritical region could be thought as the region of coexistence between the standardized subsystems of bright and dark excitations.

Key words: integrable nonlinear system, triangular-lattice ribbon, Hamiltonian structure, soliton solution, critical contraction, symmetry breaking.


  1. O.O. Vakhnenko. Integrable nonlinear ladder system with background-controlled intersite resonant coupling. J. Phys. A: Math. Gen. 39, 11013 (2006).
  2. O.O. Vakhnenko. Integrable nonlinear Schr¨odinger system on a triangular-lattice ribbon. J. Phys. Soc. Japan 84, 014003 (2015).
  3. O.O. Vakhnenko. Nonlinear integrable model of Frenkellike excitations on a ribbon of triangular lattice. J. Math. Phys. 56, 033505 (2015).
  4. O.O. Vakhnenko. Coupling-governed metamorphoses of the integrable nonlinear Schr¨odinger system on a triangular-lattice ribbon. Phys. Lett. A 380, 2069 (2016).
  5. A.C. Newell. Solitons in Mathematics and Physics (SIAM Press, 1985) [ISBN: 978-0-89871-196-7].
  6. L.A. Takhtadzhyan, L.D. Faddeyev. Gamil'tonov Podkhod v Teorii Solitonov (Nauka, 1986); L.A. Takhtadzhyan, L.D. Faddeev. Hamiltonian Methods in the Theory of Solitons (Springer, 1987) [ISBN: 978-3-540-69843-2].
  7. G.-Z. Tu. On Liouville integrability of zero-curvature equations and the Yang hierarchy. J. Phys. A: Math. Gen. 22, 2375 (1989).
  8. R. Peierls. Zur theorie des diamagnetismus von leitungselektronen. Z. Phys. 80, 763 (1933) .
  9. O.O. Vakhnenko, M.J. Velgakis. Transverse and longitudinal dynamics of nonlinear intramolecular excitations on multileg ladder lattices. Phys. Rev. E 61, 7110 (2000).
  10. O.O. Vakhnenko. Enigma of probability amplitudes in Hamiltonian formulation of integrable semidiscrete nonlinear Schr¨odinger systems. Phys. Rev. E 77, 026604 (2008).
  11. B.A. Dubrovin, S.P. Novikov, A.F. Fomenko. Sovremennaya Geometriya. Metody i Prilozheniya (Nauka, 1986); B.A. Dubrovin, S.P. Novikov, A.F. Fomenko. Modern Geometry. Methods and Applications (Springer, 1984) [ISBN: 978-1-4684-9946-9].
  12. B.M. Maschke, A.J. Van Der Schaft, P.C. Breedveld. An intrinsic Hamiltonian formulation of network dynamics: Non-standard Poisson structures and gyrators. J. Franklin Inst. 329, 923 (1992).
  13. V.E. Zakharov, E.A. Kuznetsov. Gamil'tonovskiy formalizm dlya nelineynykh voln. Usp. Fiz. Nauk 167, 1137 (1997);
    V.E. Zakharov, E.A. Kuznetsov. Hamiltonian formalism for nonlinear waves. Phys.– Uspekhi 40, 1087 (1997).
  14. M.J. Ablowitz, J.F. Ladik. Nonlinear differential-difference equations. J. Math. Phys. 16, 598 (1975).
  15. M.J. Ablowitz, J.F. Ladik. Nonlinear differential–difference equations and Fourier analysis. J. Math. Phys. 17, 1011 (1976).
  16. O.O. Vakhnenko. Solitons in parametrically driven discrete nonlinear Schr¨odinger systems with the exploding range of intersite interactions. J. Math. Phys. 43, 2587 (2002).
  17. O.O. Vakhnenko. Solitons on a zigzag-runged ladder lattice. Phys. Rev. E 64, 067601 (2001).
  18. O.O. Vakhnenko. Inverse scattering transform for the nonlinear Schr¨odinger system on a zigzag-runged ladder lattice. J. Math. Phys. 51, 103518 (2010).
  19. O.O. Vakhnenko. Nova povnistyu integrovna dyskretyzatsiya neliniynoho rivnyannya Schr¨odingera (The new comlpletely integrable discretization of the nonlinear Schr¨odinger equation). Ukr. J. Phys. 40, 118 (1995).
  20. O.O. Vakhnenko, V.O. Vakhnenko. Physically corrected Ablowitz–Ladik model and its application to the Peierls–Nabarro problem. Phys. Lett. A 196, 307 (1995).
  21. O.O. Vakhnenko. Asymmetric canonicalization of the integrable nonlinear Schr¨odinger system on a triangularlattice ribbon. Appl. Math. Lett. 64, 81 (2017).