• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 3, p.263-269
https://doi.org/10.15407/ujpe62.03.0923    Paper

Kharchenko V.F.

Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14-b, Metrolohichna Str., Kyiv 03143, Ukraine; e-mail: vkharchenko@bitp.kiev.ua)

Solution of the Lippmann–Schwinger Equation for a Partial Wave Transition Matrix with Repulsive Coulomb Interaction

Section: General Problems of Theoretical Physics
Original Author's Text:  Ukrainian

Abstract: A special case where the Lippmann–Schwinger integral equation for the partial wave two-body Coulomb transition matrix for likely charged particles with a negative energy has an analytical solution has been considered. Analytical expressions for the partial s-, p-, and d-wave Coulomb transition matrices for repulsively interacting particles at the ground-state energy have been derived, by using the Fock method of stereographic projection of the momentum space onto a four-dimensional unit sphere.

Key words: partial wave transition matrix, Coulomb interaction, Lippmann–Schwinger equation, Fock method, analytical solution.

References:

  1. J.C.Y. Chen, A.C. Chen. Nonrelativistic off-shell two-body Coulomb amplitudes. In Advances in Atomic and Molecular Physics, edited by D.B. Bates, I. Estermann (Academic Press, 1972), Vol. 8, p.71.
    https://doi.org/10.1016/S0065-2199(08)60019-6
  2. L.D. Faddeev. Scattering theory for a three-particle system. Zh. Eksp. Teor. Fiz. ` 39, 1459 (1960) (in Russian).
  3. L.D. Faddeev. Mathematical aspects of quantummechanical scattering theory for a three-particle system. Trudy Mat. Inst. AN SSSR 69, 1 (1963) (in Russian).
  4. O.A. Yakubovsky. On the integral equations in the theory of -particle scattering. Yadern. Fiz. 5, 1312 (1967) (in Russian).
  5. A.M. Veselova. Separation of two-particle Coulomb singularities in a system of three charged particles. Theor. Math. Phys. 3, 542 (1970).
    https://doi.org/10.1007/BF01028524
  6. V.G. Gorshkov. To the relativistic theory of Coulomb field perturbations. Zh. Eksp. Teor. Fiz. ` 40, 1481 (1961) (in Russian).
  7. G.Ya. Bel'kin. Removal of two-particle Coulomb singularities in the system of four charged particles. Vestn. Leningrad. Univ. No. 13, 72 (1978).
  8. S. Okubo, D. Feldman. Some aspects of the covariant twobody problem. II. The scattering problem. Phys. Rev. 117, 292 (1960).
    https://doi.org/10.1103/PhysRev.117.292
  9. E.H. Wichmann, C.H. Woo. Integral representation for the nonrelativistic Coulomb Green's function. J. Math. Phys. 2, 178 (1961).
    https://doi.org/10.1063/1.1703696
  10. V.F. Bratsev, E.D. Trifonov. Integral representation for Green's function of the energy operator for a particle in a Coulomb field. Vestn. Leningrad. Univ. No. 16, 36 (1962).
  11. L. Hostler. Nonrelativistic Coulomb Green's function in momentum space. J. Math. Phys. 5, 1235 (1964).
    https://doi.org/10.1063/1.1704231
  12. J. Schwinger. Coulomb Green's function. J. Math. Phys. 5, 1606 (1964).
    https://doi.org/10.1063/1.1931195
  13. A.M. Perelomov, V.S. Popov. The Lorentz group as a dynamic symmetry group of the hydrogen atom. Zh. Eksp. Teor. Fiz. 50, 179 (1966) (in Russian).
  14. S.A. Shadchin, V.F. Kharchenko. The analytical expression for the two-particle Coulomb Green's function with explicitly separated singularities. J. Phys. B 16, 1319 (1983).
    https://doi.org/10.1088/0022-3700/16/8/009
  15. S.A. Storozhenko, S.A. Shadchin. Two-particle Coulomb Green's function in the momentum space with explicitly separated singularities. Theor. Math. Phys. 76, 339 (1988).
    https://doi.org/10.1007/BF01016852
  16. H. van Haeringen, L.P. Kok. New inequalities for the Coulomb T matrix in momentum space. J. Math. Phys. 25, 3033 (1984).
    https://doi.org/10.1063/1.526017
  17. V.A. Fock. Zur Theorie des Wasserstoffatoms. Z. Phys. 98, 145 (1935).
    https://doi.org/10.1007/BF01336904
  18. V.F. Kharchenko. Analytical expressions for partial wave two-body Coulomb transition matrices at ground-state energy. Ann. Phys. 374, 16 (2016).
    https://doi.org/10.1016/j.aop.2016.08.004
  19. I.S. Gradshtein, I.M. Ryzhik. Table of Integrals, Series, and Products (Academic Press, 1980) [ISBN: 0122947606].
  20. V.F. Kharchenko. Electric multipole polarizabilities of quantum bound systems in the transition matrix formalism. J. Mod. Phys. 4, 99(2013).
    https://doi.org/10.4236/jmp.2013.41016