• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 2, p.146-151
https://doi.org/10.15407/ujpe62.02.0146    Paper

Choudhury M.D.1, Sen R.2, Sharma B.I.1

1 Department of Physics, Assam University of Silchar
(Silchar 788011, India)
2 Department of Physics, S.S. College
(Hailakandi 788151, India; e-mail: rupamsen@sscollegehkd.ac.in)

Vibrational IR Spectra of Solid Carbon Monoxide

Section: Solid Matter
Original Author's Text: English

Abstract: The vibrational energy levels of solid carbon monoxide are calculated, by considering a lo- cal Hamiltonian with the Morse potential with the use of the U(2) algebra. Each bond of the molecule is changed by a corresponding Lie algebra, and, fnally, the local Hamiltonian is constructed with the help of interacting Casimir and Majorana operators. Only the fundamental infrared stretching modes of vibration of solid carbon monoxide are then calculated, by using that Hamiltonian, and are compared with the experimental results.

Key words:  vibrational spectra, Lie algebra, solid carbon monoxide.

References:

  1. D. Levine, C.E. Wulfman. Energy transfer to a Morse oscillator. Chem. Phys. Lett. 60, 372 (1979).
    https://doi.org/10.1016/0009-2614(79)80591-6
  2. F. Iachello. Algebraic methods for molecular rotation-vibration spectra. Chem. Phys. Lett. 78, 581 (1981).
    https://doi.org/10.1016/0009-2614(81)85262-1
  3. F. Iachello, R.D. Levine. Algebraic approach to molecular rotation-vibration spectra. I. Diatomic molecules. J. Chem. Phys. 77, 3046 (1982).
    https://doi.org/10.1063/1.444228
  4. F. Iachello, S. Oss. Algebraic methods in quantum mechanics: from molecules to polymers. Eur. Phys. J. D 19, 307 (2002).
    https://doi.org/10.1140/epjd/e20020089
  5. N.K. Sarkar, J. Choudhury, R. Bhattacharjee. An algebraic approach to the study of the vibrational spectra of HCN. Mol. Phys. 104, 3051 (2006).
    https://doi.org/10.1080/00268970600954235
  6. N.K. Sarkar, J. Choudhury, R. Bhattacharjee. Algebraic approach: Study of vibrational spectra of some linear triatomic molecules. Indian J. Phys. 82, 767 (2008).
  7. R. Sen, A. Kalyan, N.K. Sarkar, R. Bhattacharjee. Stretching vibrational IR active spectra of carbon fullerenes. Fuller. Nanotub. Car. Nanostruct. 21, 861 (2013).
    https://doi.org/10.1080/1536383X.2012.684177
  8. R. Sen, A. Kalyan, R.S. Paul, N.K. Sarkar, R. Bhattacharjee. A study of vibrational spectra of fullerenes C70 and C80: An algebraic approach. Acta Phys. Polon. A 120, 407 (2011).
    https://doi.org/10.12693/APhysPolA.120.407
  9. R. Sen, A. Kalyan, R. Das, N.K. Sarkar, R. Bhattacharjee. Vibrational frequencies of buckminsterfullerene: An algebraic study. Spectrosc. Lett. 45, 273 (2012).
    https://doi.org/10.1080/00387010.2011.610418
  10. R. Sen, A. Kalyan, N.K. Sarkar, R. Bhattacharjee. Spectroscopic analysis of C20 isomers by the (2) algebraic model. Fuller. Nanotub. Car. Nanostruct. 21, 403 (2013).
    https://doi.org/10.1080/1536383X.2011.629754
  11. R. Sen, A. Kalyan, J. Choudhury, N.K. Sarkar, R. Bhattacharjee. U(2) Lie algebraic study of vibrational spectra of fullerene C80 and its epoxide C80–O. Ukr. J. Phys. 57 500 (2012).
  12. A. Kalyan, R. Sen, N.K. Sarkar, R. Bhattacharjee. Infrared-active vibrational modes of fullerene C70. Fuller. Nanotub. Car. Nanostruct. 21, 429 (2013) .
    https://doi.org/10.1080/1536383X.2011.629757
  13. R. Sen, A. Kalyan, R. Bhattacharjee. Vibrational IR spectroscopy of small carbon clusters. J. Comput. Theor. Nanosci. 10, 821 (2013).
    https://doi.org/10.1166/jctn.2013.2775
  14. R. Sen, A. Kalyan, N. K. Sarkar, R. Bhattacharjee. Application of (2) algebraic model in the study of stretching vibrational spectra of large fullerenes C180 and C240. Fuller. Nanotub. Car. Nanostruct. 21, 725 (2013).
    https://doi.org/10.1080/1536383X.2012.654543
  15. R. Sen, A. Kalyan, R. Bhattacharjee. A study of the stretching vibrational spectra of C120O and C120O by (2) Lie algebra. J. Serb. Chem. Soc. 78, 85 (2013).
    https://doi.org/10.2298/JSC120131074S
  16. R. Sen, A. Kalyan, S.K. Singha, N.K. Sarkar, R. Bhattacharjee. A spectroscopic analysis of stretching vibrational IR spectra of polyatomic molecules: A review. Quantum Matter 2, (4), 321 (2013).
    https://doi.org/10.1166/qm.2013.1063
  17. S.K. Singha, A. Kalyan, R. Sen, R. Bhattacharjee. Successful applications of Lie algebraic model to analyze the vibrational spectra of fuorobenzene. Polycycl. Aromat. Comp. 34 (2) 135 (2014).
    https://doi.org/10.1080/10406638.2013.861497
  18. G.E. Ewing, G.C. Pimentel. Infrared spectrum of solid carbon monoxide. J. Chem. Phys. 35, 925 (1961).
    https://doi.org/10.1063/1.1701239
  19. S. Oss. Algebraic models in molecular spectroscopy. Adv. Chem. Phys. 93, 455 (1996).
    https://doi.org/10.1002/9780470141526.ch8
  20. F. Iachello, R.D. Levine. Algebraic Theory of Molecules (Oxford Univ. Press, 1995) [ISBN: 9780195080919].
  21. F. Iachello, S. Oss. Model of coupled anharmonic oscillators and applications to octahedral molecules. Phys. Rev. Lett. 66, 2976 (1991).
    https://doi.org/10.1103/PhysRevLett.66.2976
  22. F. Iachello, S. Oss. Vibrational spectroscopy and intramolecular relaxation of benzene. J. Molec. Spectr. 153, 225 (1992).
    https://doi.org/10.1016/0022-2852(92)90471-Y
  23. K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part A: Theory and Applications in Inorganic Chemistry (Wiley, 1997) [ISBN: 978- 0-471-74339-2].
  24. K.P. Huber, G. Herzberg. Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules (Van Nostrand, 1979) [ISBN: 0-442-23394-9].
    https://doi.org/10.1007/978-1-4757-0961-2