• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 2, p.118-122
https://doi.org/10.15407/ujpe62.02.0118    Paper

Mudryi S.I., Lytvyn M.A.

Ivan Franko National University of L’viv
(8, Kyrylo i Mefodii Str., Lviv 79005, Ukraine; e-mail: mishko.litvin@gmail.com)

Influence of Low Nickel Contents on the Surface Tension and Density of Nickel–Indium Melts

Section: Soft Matter
Original Author's Text: Ukrainian

Abstract: The density and the surface tension coefcient of nickel–indium melts with low Ni contents ranging from 0 to 15 at.% have been studied, by using the sessile drop method. Analytic expressions are derived for the temperature dependences of the density and the surface tension coefcient of a melt. Anomalies in the concentration dependences of the density and the surface tension coefcient are revealed. They are supposed to be caused by structural inhomogeneities both near the melt surface and in the melt bulk.

Key words: density, surface tension, Ni–In molten alloys, cluster structure.

References:

  1. V.I. Nizhenko, L.I. Floka. Surface Tension of Liquid Metals and Alloys (Metallurgy, 1981) (in Russian).
  2. B.J. Keene. Surface tension of pure metals. Int. Mater. Rev. 38, No. 4, 157 (1993).
     CrossRef
  3. G. Lang, P. Laty, J. C. Joud, P. Desre. Messing der Oberfachenspannung reiniger fussiger Reinraetalle mit verochiedenen Uethoden. Z. Metallkd. 68, 133 (1977).
  4. R.Kh. Dadashev. Thermodynamics of Surface Phenomena (Fizmat, 2007) (in Russian).
  5. Yu.M. Ivashchenko, V.N. Yeryomenko. Basics of Precision Measurements of the Surface Energy of Metal Melts Using the Sessile Drop Method (Naukova Dumka, 1972) (in Ukrainian).
  6. T.S. Chow. Wetting of rough surfaces. J. Phys.: Condens. Matter 10, L445 (1998).
     CrossRef
  7. V.V. Pavlov, S.I. Popel. Concentration dependence of surface tension in ideal solutions. Zh. Fiz. Khim. 40, 2515 (1966) (in Russian).
  8. B.R. Orton, S.P. Woodise. An X-ray difraction investigation of molten indium-nickel alloys by the partial interference function method. J. Phys. F: Met. Phys. 14, 2103 (1974).
     CrossRef