• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 2, p.172-183
https://doi.org/10.15407/ujpe62.02.0172    Paper

Prykarpatsky A.K.1,2

1 Faculty of Applied Mathematics at AGH University of Science and Technology
(Krak´ow, Poland)
2 Ivan Franko State Pedagogical University of Drohobych
(Drohobych, Lviv region, Ukraine)

The Quantum Fermionic Charged Particle Self-Interaction Problem within the Fock Multitime and Feynman Proper Time Paradigms

Section: General Problems of Theoretical Physics
Original Author's Text:  English

Abstract: A quantum fermionic massless charged particle self-interacting with its own self-generated bosonic electromagnetic field is reanalyzed in the framework of the Fock multitime and Feynman proper time paradigms. The self-interaction phenomenon structure is studied within the method based on a suitably renormalized quantum Fock space. The fermionic charged particle mass spectrum is also discussed.

Key words: quantum fermionic field, charged particle self-interaction problem, quantum Maxwell electrodynamics, Fock space, Fock multitime approach, charged particle inertial mass problem, least action principle, Lagrangian formalism, Feynman proper time paradigm.


  1. M. Abraham. Dynamik des electrons in Nachrichten von der Geselschaft der Wissenschafften zu G¨ottingen (Mathematisch-Physikalische Klasse, 1902), s. 20
  2. R. Abraham, J. Marsden. Foundations of Mechanics (Benjamin Cummings, 1987).
  3. A. Annila. The meaning of mass. Intern. J. Theor. Math. Phys. 2 (4), 67 (2012).
  4. V.I. Arnold. Mathematical Methods of Classical Mechanics (Springer, 1978).
  5. B. Di Bartolo, Classical Theory of Electromagnetism (World Scientific, 2004).
  6. R. Becker. Theorie der Elektrizitat. Bd. II. Elektronentheorie (Teubner, 1933).
  7. J.D. Bjorken, S.D. Drell. Relativistic Quantum Fields (McGraw-Hill, 1965).
  8. D. Blackmore, N.N. Bogolubov (jr.), A.K. Prykarpatski. The Lagrangian and Hamiltonian aspects of the electrodynamic vacuum-field theory models. Boson Journal of Modern Physics (BJMP) 2 (2), 105 (2016).
  9. D. Blackmore, A.K. Prykarpatski, V.Hr. Samoylenko. Nonlinear Dynamical Systems of Mathematical Physics: Spectral and Differential-Geometrical Integrability Analysis (World Scientific, 2011).
  10. D. Blackmore, A.K. Prykarpatski, N.N. Bogolubov (jr.), J.J. S lawianowski. Mathematical foundations of the classical Maxwell-Lorentz electrodynamic models in the canonical Lagrangian and Hamiltonian formalisms. Universal J. Phys. Appl. 1 (2), 160 (2013).
  11. K. Bleuer. Eine neue Methode zum Behandlung der longitudinalen und skalaren Photonen. Helv. Phys. Acta 23, 567 (1950).
  12. N.N. Bogolubov, N.N. Bogolubov (jr.). Introduction into Quantum Statistical Mechanics (World Scientific, 1986) [ISBN-13: 978-9814295826, ISBN-10: 9814295825].
  13. N.N. Bogolubov, A.A. Logunov, A.I. Oksak, I.T. Todorov. General Principles of Quantum Field Theory (Kluwer, 1990) [ISBN: 978-94-010-6707-2].
  14. N.N. Bogoliubov, D.V. Shirkov. Quantum Fields (AddisonWesley, 1982).
  15. A.K. Prykarpatsky, N.N. Bogolubov (jr.). The Maxwell electromagnetic equations and the Lorentz type force derivation – The Feynman approach legacy. Int. J. Theor. Phys. 5, 237 (2012).
  16. N.N. Bogolubov (jr.), A.K. Prykarpatsky. The analysis of Lagrangian and Hamiltonian properties of the classical relativistic electrodynamics models and their quantization. Found. Phys. 40, 469 (2010).
  17. N.N. Bogolubov (jr.), A.K. Prykarpatsky, D. Blackmore. Maxwell–Lorentz electrodynamics revisited via the Lagrangian formalism and Feynman proper time paradigm. Mathematics 3, 190 (2015).
  18. N.N. Bogolubov (jr.), A.K. Prykarpatsky, U. Taneri, Y.A. Prykarpatsky. The electromagnetic Lorentz condition problem and symplectic properties of Maxwell- and Yang–Mills-type dynamical systems. J. Phys. A: Math. Theor. 42, 165401 (2009).
  19. L. Brillouin. Relativity Reexamined (Academic Press, 1970).
  20. P.A.M. Dirac. An extensible model of the electron. Proc. Roy. Soc. Ser. A 167, 148 (1938);
  21. P.A.M. Dirac. An extensible model of the electron. Proc. Roy. Soc. Ser. A 167, 148 (1938); Proc. R. Soc. Lond. Ser. A 167, 148 (1938).
  22. P.A.M. Dirac, V.A. Fock, B. Podolsky. On quantum electrodynamics. Sow. Phys. 2, 468 (1932).
  23. F.J. Dyson. Feynman's proof of the Maxwell equations. Am. J. Phys. 58, 209 (1990).
  24. F.J. Dyson. Feynman at Cornell. Phys. Today 42 (2), 32 (1989).
  25. A. Einstein. Relativit¨atsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch Radioaktivit¨at 4, 411 (1907).
  26. E. Fermi. Quantum theory of radiation. Rev. Mod. Phys. 4, 87 (1932).
  27. H.G. Dehmlet. Nobel Lecture. Experiments with an Isolated Subatomic Particle at Rest (World Scientific, 1993).
  28. R. Feynman. Statistical Mechanics (Perseus Books, 1998) [ISBN-13: 978-0201360769, ISBN-10: 0201360764].
  29. R. Feynman, R. Leighton, M. Sands. The Feynman Lectures on Physics. Electrodynamics (Addison-Wesley, 1964), Vol. 2.
  30. R. Feynman, R. Leighton, M. Sands. The Feynman Lectures on Physics. The Modern Science on the Nature. Mechanics. Space, Time, Motion (Addison-Wesley, 1963), Vol. 1.
  31. V. Fock. Die eigenzeit in der klassischen und in der quantenmechanik. Sow. Phys. 12, 404 (1937).
  32. V.A. Fock, B. Podolsky. On the quantization of electromagnetic waves and the interaction of charges in Dirac's theory. Sow. Phys. 1, 801 (1932).
  33. T.L. Gill, W.W. Zachary. Two mathematically equivalent versions of Maxwell equations, Preprint (University of Maryland, 2008).
  34. T.L. Gill, W.W. Zachary. Two mathematically equivalent versions of Maxwell's equations. Found. of Physics 4, 99 (2011).
  35. T.L. Gill, W.W. Zachary, J. Lindsey. The classical electron problem. Found. of Physics 31 (9), 1299 (2001).
  36. C. Godbillon. Geometrie Differentielle et Mecanique Analytique (Hermann, 1969).
  37. S.N. Gupta. Theory of longitudinal photons in quantum electrodynamics. Proc. Phys. Soc. (London) A63, 681 (1950).
  38. R.T. Hammond. Electrodynamics and radiation reaction. Found. of Physics 43, 201 (2013).
  39. R.T. Hammond. Relativistic particle motion and radiation reaction. Electr. J. Theor. Phys. No. 23, 221 (2010).
  40. P. Higgs. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508 (1964);
    Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 145, 1156 (1966).
  41. G. t'Hooft. Renormalizable Lagrangians for massive Yang–Mills fields. Nucl. Phys. B 35, 167 (1971).
  42. K. Huang. Statistical Mechanics (Wiley, 1987) [ISBN: 0- 471-81518-7].
  43. J.D. Jackson. Classical Electrodynamics (Wiley, 1999) [ISBN: 978-0-471-30932-1].
  44. M. Jammer. Concepts of Mass in Contemporary Physics and Philosophy (Princeton Univ. Press, 2009) [ISBN: 9781400823789].
  45. B.P. Kosyakov. Radiation in electrodynamics and in Yang–Mills theory. Sov. Phys. Usp. 35 (2), 135 (1992).
  46. B.P. Kosyakov. Introduction to the Classical Theory of Particles and Fields (Springer, 2007) [ISBN 978-3-540- 40934-2].
  47. B.A. Kupershmidt, Infinite-dimensional analogs of the minimal coupling principle and of the Poincar’e lemma for differential two-forms. Diff. Geom. & Appl. 2, 275 (1992).
  48. L.D. Landau, E.M. Lifshitz. The Classical Theory of Fields (Pergamon, 1983).
  49. H.A. Lorentz. Electromagnetic phenomena in a system moving with any velocity smaller than that of light. Proceed. of the Royal Netherlands Academy of Arts and Sciences 6, 809 (1904).
  50. H.A. Lorentz. Theory of Electrons (Teubner, 1909).
  51. H.A. Lorentz. The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat (Jacques Gabay, 1992).
  52. A.A. Martins, M.J. Pinheiro. On the electromagnetic origin of inertia and inertial mass. Int. J. Theor. Phys. 47, 2706 (2008).
  53. R. Medina. Radiation reaction of a classical quasi-rigid extended particle. J. Phys. A: Math. Gen. 39, 3801 (2006).
  54. H. Minkowski. Raum und Zeit. Physik. Z. 10, 104 (1909).
  55. V.B. Morozov. On the question of the electromagnetic momentum of a charged body. Physics–Uspekhi 54 (4), 371 (2011).
  56. A. Ori, E.J. Rosenthal. Calculation of the self force using the extended-object approach. Math. Phys. 45, 2347 (2004).
  57. A. Ori, E.J. Rosenthal. Universal self-force from an extended object approach. Phys. Rev. D 68, 041701(R) (2003).
  58. L. Page, N.I. Adams (jr.). Action and reaction between moving charges. Am. J. Phys. 13, 141 (1945).
  59. P.T. Pappas. The original Amp`ere force and Biot–Savart and Lorentz force. Nuovo Cim. B 76 (2), 189 (1983).
  60. W. Pauli. Theory of Relativity (Oxford Univ. Press, 1958) [ISBN: 978-0486641522].
  61. D.T. Pegg. Absorber theory of radiation. Rep. Prog. Phys. 38, 1339 (1975).
  62. H. Poincar’e. Sur la dynamique de l'´electron. C.R. Acad. Sci. (Paris) 140, 1504 (1905).
  63. A.K. Prykarpatsky. Classical electromagnetic theory revisiting: The A.M. Amp’ere law and the vacuum field theory approach. Universal J. Phys. Appl. 2 (8), 381 (2014).
  64. A.K. Prykarpatsky, N.N. Bogolubov (jr.), U. Taneri. The relativistic electrodynamics least action principles revisited: New charged point particle and hadronic string models analysis. Int. J. Theor. Phys. 49, 798 (2010).
  65. A.K. Prykarpatsky, N.N. Bogolubov (jr.). On the classical Maxwell–Lorentz electrodynamics, the electron inertia problem, and the Feynman proper time paradigm. Ukr. J. Phys. 61, 187 (2016).
  66. H.E. Puthoff. Casimir vacuum energy and the semicalssical electron. Int. J. Theor. Phys. 46, 3005 (2007).
  67. F. Rohrlich. Classical Charged Particles (Addison-Wesley, 1965) [ISBN: 0201064928].
  68. F. Rohrlich. Self-energy and stability of the classical electron. Amer. J. of Phys., 28, 639 (1960).
  69. G. Rousseaux. The gauge non-invariance of classical electromagnetism. arXiv:physics/0506203v1 (2005).
  70. G. Rousseaux. On the physical meaning of the gauge conditions of classical electromagnetism: The hydrodynamics analogue viewpoint. arXiv:physics/0511047v1 [physics.class-ph] (2005).
  71. J. Schwinger. Quantum Electrodynamics (Dover, 1958) [ISBN: 0486604446].
  72. J. Schwinger. On gauge invariance of vacuum polarization. Phys. Rev. 82 (5), 664 (1951).
  73. J.J. S lawianowski. Geometry of Phase Spaces (Wiley, 1991).
  74. V.M. Simulik. The electron as a system of classical electromagnetic and scalar fields. In: What is the Electron? Edited by V.M. Simulik (Apeiron, 2005), p. 109.
  75. C. Teitelboim. Splitting of the Maxwell tensor: Radiation reaction without advanced fields. Phys. Rev. D1, 1572 (1970).
  76. V.S. Vladimirov. Equations of Mathematical Physics (Dekker, 1971) [ISBN: 0824717139].
  77. J.B. Wheeler, R.P. Feynman. Interaction with the absorber as the mechanism of radiation. Rev. Modern Phys. 17, 157 (1945) [DOI: 10.1103/RevModPhys.17.157]
  78. . F. Wilczek. Origins of mass. Open Phys. 10 (5), 1021 (2012) [DOI: 10.2478/s11534-012-0121-0]
  79. F. Wilczek. QCD and natural philosophy. Ann. Henry Poincar´e 4, 211 (2003) [DOI: 10.1007/s00023-003-0917-y].
  80. Y. Yaremko, V. Tretyak. Radiation Reaction in Classical Field Theory (LAMBERT Acad. Publ., 2012).