• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 12, p. 1050-1056
https://doi.org/10.15407/ujpe62.12.1050    Paper

Hashim A.1, Hadi A.2

1 University of Babylon, College of Education for Pure Sciences, Department of Physics
(Babylon, Iraq)
2 University of Babylon, College of Materials, Department of Ceramics and Building Materials, Iraq
(Babylon, Iraq; e-mail: ahmed_taay@yahoo.com)

Synthesis and Characterization of Novel Piezoelectric and Energy Storage Nanocompo-sites: Biodegradable Materials–Magnesium Oxide Nanoparticles

Section: Nanosystems
Original Author's Text: English

Abstract: Sensors based on piezoelectric polymer nanocomposites have high sensitivity, low weight, flexibility, low cost, etc. We have studied a novel piezoelectric sensor made of the carboxymethyl cellulose, polyvinyl pyrrolidone–magnesium oxide nanocomposite. The electric conductivity and dielectric properties of the nanocomposite are studied at room temperature. The dielectric properties of the nanocomposite are examined in frequency range (100 Hz–5 MHz). The DC electric conductivity, dielectric constant, and dielectric losses increase with the concentration of magnesium oxide nanoparticles. The dielectric constant and dielectric losses decrease, as the frequency increases. The AC electrical conductivity increases with the concentration of magnesium oxide nanoparticles and the frequency. The nanocomposite was tested for the piezoelectric application in the pressure interval (80–200) bar. The experimental results show that the electric resistance is decreased, as the compaction stress increases. The nanocomposite has high sensitivity to the pressure. The nanocomposites is tested for the thermal energy storage and release. The results indicate that the times of the melting and solidification in the thermal energy storage and release decrease, as the concentration of magnesium oxide nanoparticles increases.

Key words:  compaction stress, sensitivity, carboxymethyl cellulose, piezoelectric, conductivity, energy storage.

References:

  1. R.P. Chahal, S. Mahendia, A.K. Tomar, S. Kumar. Optical and structural properties of gamma irradiated PVA/Ag nanocomposite films. Appl. Sci. Lett. 2, No. 2, 55 (2016).
  2. S. Ju, M. Chen, H. Zhang, Z. Zhang, Dielectric properties of nanosilica/low-density polyethylene composites: The surface chemistry of nanoparticles and deep traps induced by nanoparticles. J. Express Polymer Lett. 8, No. 9, 682 (2014).
    https://doi.org/10.3144/expresspolymlett.2014.71
  3. Ch.V. Subba Reddy, Xia Han, Quan-Yao Zhu, Li-Qiang Mai, Wen Chen. Dielectric spectroscopy studies on (PVP + PVA) polyblend film. Microelect. Engin. 83, 281 (2006).
  4. A.M. Abdelghany, E.M. Abdelrazek, D. Rashad. Impact of in situ preparation of CdS filled PVP nano-composite. J. Spectrochim. Acta Part A: Molec. Biomolec. Spectrosc. 130, 302 (2014).
    https://doi.org/10.1016/j.saa.2014.04.049
  5. B.H. Rabee, A. Hashim. Dielectric properties of (PS–BaSO4 · 5H2O) composites. Eur. J. Social Sci. 32, No. 3, 316 (2012).
  6. A.J. Kadham Algidsawi, H.J. Kadham Algidsawi, A. Hashim, G.A.A.W Ali. The dielectric properties of (PVC-Zn) composites. Australian J. Basic Appl. Sci. 5, No. 11, 1463 (2011).
  7. B. Hussien, A. Hashim, A. Jewad. Electrical properties of polyvinylchloride – Zinc composite. Eur. J. Social Sci. 32, No. 3, 225 (2012).
  8. Z. Al-Ramadhan, A. Hashim, A.J. Kadham Algidsawi. The D.C electrical properties of (PVC-Al2O3) composites. AIP Conf. Proceed. 1400, No. 1, 180 (2011).
    https://doi.org/10.1063/1.3663109
  9. A. Hashim, A.J. Kadham Algidsawi, H. Abduljalil, S. Hadi. Mechanical properties of (PVA-CoNO3, BaSO4 · 5H2O) composites. Eur. J. Scient. Research 65, No. 2, 163 (2011).
  10. I.R. Agool, K.J. Kadhim, A. Hashim. Preparation of (polyvinyl alcohol–polyethylene glycol–polyvinyl pyrolidinone–titanium oxide nanoparticles) nanocomposites: Electrical properties for energy storage and release. Inter. J. Plastics Technol. 20, No. 1, 121 (2016).
    https://doi.org/10.1007/s12588-016-9144-5
  11. H. Gullapalli, V.S.M. Vemuru, A. Kumar, A. Botello-Mendez, R. Vajtai, M. Terrones, S. Nagarajaiah, P.M. Ajayan. Flexible piezoelectric ZnO–paper nanocomposite strain sensor. Small 6, No. 15, 1641 (2010).
    https://doi.org/10.1002/smll.201000254
  12. H. Abduljalil, A. Hashim, A. Jewad. The effect of addition of titanium dioxide on electrical properties of polymethyl methacrylate. Eur. J. Sci. Research 63, No. 2, 231 (2011).
  13. B. Hussien, A.J. Kadham Algidsawi, A. Hashim. The A.C electrical properties of (PVC-Sn) composites. Australian J. Basic Appl. Sci. 5, No. 7, 933 (2011).
  14. R. Divya, M. Meena, C.K. Mahadevan, C.M. Padma. Investigation on CuO dispersed PVA polymer films. J. Engineer. Research Applic. 4, Iss. 5, 1 (2014).
  15. A.F. Mansour, S.F. Mansour, M.A. Abdo. Enhancement of structural and electrical properties of ZnO/ PVA nanocomposites. IOSR J. Appl. Phys. 7, Iss. 2, 97 (2015).
  16. P. Vasudevan, S. Thomas, K. Arunkumar, S. Karthika, N. Unnikrishnan, Synthesis and dielectric studies of poly (vinyl pyrrolidone)/titanium dioxide nanocomposites.J. Mater. Sci. Engineer. 73, 1 (2015).
    https://doi.org/10.1088/1757-899X/73/1/012015
  17. M.A. Habbeb, A. Hashim, A.-R.K. AbidAli. The dielectric properties for (PMMA-LiF) composites. Eur. J. Sci. Research 61, No. 3, 367 (2011).
  18. C. Srikanth, C. Sridhar, B.M. Nagabhushana, R.D. Mathad. Characterization and DC conductivity of novel CuO doped polyvinyl alcohol (PVA) nano-composite films. J. Engineer. Research Applic. 4, Iss. 10, 38 (2014).
  19. J. Huang, S. Lu, X. Kong, S. Liu, Y. Li. Form-stable phase change materials based on eutectic mixture of tetradecanol and fatty acids for building energy storage: Preparation and performance analysis. J. Mater. 6, 4758 (2013).
    https://doi.org/10.3390/ma6104758