• Українська
  • English

<Prev | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 12, p. 1017-1023
https://doi.org/10.15407/ujpe62.12.1017    Paper

Heidari E.

Department of Sciences, Bushehr Branch, Islamic Azad University, Bushehr, Iran
(Shahid Motahary Str., Islamic Azad Univ., Bushehr, Iran; e-mail: ehphysics75@iaubushehr.ac.ir)

Relativistic Laser-Plasma Interactions. Moving Solitary Waves in Plasma Channels and the Kinetic Dispersion Relation of Cherenkov Radiation

Section: Plasmas and Gases
Original Author's Text: English

Abstract: The propagation of an intense laser beam in a preformed plasma channel is studied. Considering a propagating Gaussian laser pulse in a relativistic plasma channel which has a parabolic density profile, the evolution equation of the laser spot size is derived analytically and solved numerically. The governing equation includes the effects of relativistic corrections to the ponderomotive self-channeling, preformed channel focusing, and self-focusing. In order to investigate the conditions for the existence of electromagnetic solitary waves, the solutions of the evolution equation for the laser spot size are discussed in terms of a relativistic effective potential. Some solitary wave solutions are illustrated numerically. The relativistic corrections to the dispersion relation of Cherenkov emission in dusty plasma is presented briefly. In the low-velocity limit, all the expressions in the present study are reduced to their associated counterparts in the nonrelativistic regime, as should be.

Key words:  plasma channels, solitons, relativistic plasma, Cherenkov radiation.

References:

  1. D. Farina, S.V. Bulanov. Slow electromagnetic solitons in electron-ion plasmas. Plasma Phys. Rep. 27, 641 (2001).
    https://doi.org/10.1134/1.1390536
  2. B. Shen, M.Y. Yu. High-intensity laser-field amplification between two foils. Phys. Rev. Lett. 89, 275004 (2002).
    https://doi.org/10.1103/PhysRevLett.89.275004
  3. S.V. Bulanov, T. Esirkepov, T. Tajima. Light intensification towards the Schwinger limit. Phys. Rev. Lett. 91, 085001 (2003).
    https://doi.org/10.1103/PhysRevLett.91.085001
  4. E. Heidari, M. Aslaninejad. Relativistic electron-cyclotron waves in a hot plasma channel with a parabolic density profile. Acta Phys. Polon. A 123, 285 (2013).
    https://doi.org/10.12693/APhysPolA.123.285
  5. R. Malik, K.H. Malik. Compressive solitons in a moving ep plasma under the effect of dust grains and an external magnetic field. J. Theor. Appl. Phys. 7, 65 (2013).
    https://doi.org/10.1186/2251-7235-7-65
  6. V.V. Kulish et al. Nonlinear theory of plasma-beam superheterodyne free electron laser of dopplertron type with nonaxial injection of electron beam. Acta Phys. Polon. A 126, 1263 (2014).
    https://doi.org/10.12693/APhysPolA.126.1263
  7. M. Mahmoodi-Drian. The effect of external magnetic field on the density distributions and electromagnetic fields in the interaction of high-intensity short laser pulse with collisionless underdense plasma. J. Theor. Appl. Phys. 10, 33 (2016).
    https://doi.org/10.1007/s40094-015-0198-0
  8. E. Heidari, M. Aslaninejad, H. Eshraghi. Electron trapping in the electrosound solitary wave for propagation of high intensity laser in a relativistic plasma. Plasma Phys. Control. Fusion 52, 075010 (2010).
    https://doi.org/10.1088/0741-3335/52/7/075010
  9. R.A. Cairns, A. Reitsma, R. Bingham. Envelope equations and conservation laws describing wakefield generation and electron acceleration. Phys. Plasmas 11, 766 (2004).
    https://doi.org/10.1063/1.1638753
  10. R. Bingham. Accelerator physics: In the wake of success. Nature 424, 258 (2003).
    https://doi.org/10.1038/424258a
  11. B. Hafizi, A. Ting, P. Sprangle, R.F. Hubbard. Relativistic focusing and ponderomotive channeling of intense laser beams. Phys. Rev. E 62, 4120 (2000).
    https://doi.org/10.1103/PhysRevE.62.4120
  12. C.E. Max, J. Arons, A.B. Langdon. Self-modulation and self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33, 209 (1974).
    https://doi.org/10.1103/PhysRevLett.33.209
  13. P.W. Wachulak, A. Bartnik, H. Fiedorowicz, J. Kostecki. Nanometer-scale incoherent imaging using laser-plasma EUV source. Acta Phys. Polon. A 121, 450 (2012).
    https://doi.org/10.12693/APhysPolA.121.450
  14. T. Mohsenpour. Nonlinear study of an ion-channel guiding free-electron laser. J. Theor. Appl. Phys. 8, 128 (2014).
    https://doi.org/10.1007/s40094-014-0128-6
  15. E. Heidari, M. Aslaninejad, H. Eshraghi, L. Rajaee. Standing electromagnetic solitons in hot ultra-relativistic electron-positron plasmas. Phys. Plasmas 21, 032305 (2014).
    https://doi.org/10.1063/1.4868729
  16. S. Zhang, B.S. Xie, X.R. Hong, H.C. Wu, X.Y. Zhao. Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum well. Phys. Plasmas 18, 033104-1 (2011).
    https://doi.org/10.1063/1.3561802
  17. B. Shen, M.Y. Yu, X. Wang. Photon-photon scattering in a plasma channel. Phys. Plasmas 10, 4570 (2003).
    https://doi.org/10.1063/1.1618772
  18. M.Y. Yu, P.K. Shukla, N.L. Tsintsadze. Nonlinear interaction of a powerful laser with an electron plasma. Phys. Fluids 25, 1049 (1982).
    https://doi.org/10.1063/1.863836
  19. B. Eliasson, P.K. Shukla. Formation and dynamics of relativistic electromagnetic solitons in plasmas containing high-and low-energy electron components. JETP Lett. 83, 447 (2006).
    https://doi.org/10.1134/S0021364006100055
  20. D. Alontseva, A. Krasavin, A. Pogrebnjak, A. Russakova. The comparative study of the structure and phase composition of Ni-based coatings modified by plasma jet or electron beam. Acta Phys. Polon. A 123, 867 (2013).
    https://doi.org/10.12693/APhysPolA.123.867
  21. M.N. Shaikh, B. Zamir, R. Ali. TE surface waves in a plasma sandwich structure. Acta Phys. Polon. A 127, 1625 (2015).
    https://doi.org/10.12693/APhysPolA.127.1625
  22. W. Lu, C. Huang, M. Zhou, W.B. Mori, T. Katsouleas. Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96, 165002 (2006).
    https://doi.org/10.1103/PhysRevLett.96.165002
  23. A.A. El-Bendary, W.F. El-Taibany, Kh.H. El-Shorbagy. Cherenkov radiation waves in inhomogeneous dusty plasma. Phys. Wave Phenom. 21, 226 (2013).
    https://doi.org/10.3103/S1541308X13030096