• Українська
  • English

<Prev | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 12, p. 1017-1023
https://doi.org/10.15407/ujpe62.12.1017    Paper

Heidari E.

Department of Sciences, Bushehr Branch, Islamic Azad University, Bushehr, Iran
(Shahid Motahary Str., Islamic Azad Univ., Bushehr, Iran; e-mail: ehphysics75@iaubushehr.ac.ir)

Relativistic Laser-Plasma Interactions. Moving Solitary Waves in Plasma Channels and the Kinetic Dispersion Relation of Cherenkov Radiation

Section: Plasmas and Gases
Original Author's Text: English

Abstract: The propagation of an intense laser beam in a preformed plasma channel is studied. Considering a propagating Gaussian laser pulse in a relativistic plasma channel which has a parabolic density profile, the evolution equation of the laser spot size is derived analytically and solved numerically. The governing equation includes the effects of relativistic corrections to the ponderomotive self-channeling, preformed channel focusing, and self-focusing. In order to investigate the conditions for the existence of electromagnetic solitary waves, the solutions of the evolution equation for the laser spot size are discussed in terms of a relativistic effective potential. Some solitary wave solutions are illustrated numerically. The relativistic corrections to the dispersion relation of Cherenkov emission in dusty plasma is presented briefly. In the low-velocity limit, all the expressions in the present study are reduced to their associated counterparts in the nonrelativistic regime, as should be.

Key words:  plasma channels, solitons, relativistic plasma, Cherenkov radiation.


  1. D. Farina, S.V. Bulanov. Slow electromagnetic solitons in electron-ion plasmas. Plasma Phys. Rep. 27, 641 (2001).
  2. B. Shen, M.Y. Yu. High-intensity laser-field amplification between two foils. Phys. Rev. Lett. 89, 275004 (2002).
  3. S.V. Bulanov, T. Esirkepov, T. Tajima. Light intensification towards the Schwinger limit. Phys. Rev. Lett. 91, 085001 (2003).
  4. E. Heidari, M. Aslaninejad. Relativistic electron-cyclotron waves in a hot plasma channel with a parabolic density profile. Acta Phys. Polon. A 123, 285 (2013).
  5. R. Malik, K.H. Malik. Compressive solitons in a moving ep plasma under the effect of dust grains and an external magnetic field. J. Theor. Appl. Phys. 7, 65 (2013).
  6. V.V. Kulish et al. Nonlinear theory of plasma-beam superheterodyne free electron laser of dopplertron type with nonaxial injection of electron beam. Acta Phys. Polon. A 126, 1263 (2014).
  7. M. Mahmoodi-Drian. The effect of external magnetic field on the density distributions and electromagnetic fields in the interaction of high-intensity short laser pulse with collisionless underdense plasma. J. Theor. Appl. Phys. 10, 33 (2016).
  8. E. Heidari, M. Aslaninejad, H. Eshraghi. Electron trapping in the electrosound solitary wave for propagation of high intensity laser in a relativistic plasma. Plasma Phys. Control. Fusion 52, 075010 (2010).
  9. R.A. Cairns, A. Reitsma, R. Bingham. Envelope equations and conservation laws describing wakefield generation and electron acceleration. Phys. Plasmas 11, 766 (2004).
  10. R. Bingham. Accelerator physics: In the wake of success. Nature 424, 258 (2003).
  11. B. Hafizi, A. Ting, P. Sprangle, R.F. Hubbard. Relativistic focusing and ponderomotive channeling of intense laser beams. Phys. Rev. E 62, 4120 (2000).
  12. C.E. Max, J. Arons, A.B. Langdon. Self-modulation and self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33, 209 (1974).
  13. P.W. Wachulak, A. Bartnik, H. Fiedorowicz, J. Kostecki. Nanometer-scale incoherent imaging using laser-plasma EUV source. Acta Phys. Polon. A 121, 450 (2012).
  14. T. Mohsenpour. Nonlinear study of an ion-channel guiding free-electron laser. J. Theor. Appl. Phys. 8, 128 (2014).
  15. E. Heidari, M. Aslaninejad, H. Eshraghi, L. Rajaee. Standing electromagnetic solitons in hot ultra-relativistic electron-positron plasmas. Phys. Plasmas 21, 032305 (2014).
  16. S. Zhang, B.S. Xie, X.R. Hong, H.C. Wu, X.Y. Zhao. Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum well. Phys. Plasmas 18, 033104-1 (2011).
  17. B. Shen, M.Y. Yu, X. Wang. Photon-photon scattering in a plasma channel. Phys. Plasmas 10, 4570 (2003).
  18. M.Y. Yu, P.K. Shukla, N.L. Tsintsadze. Nonlinear interaction of a powerful laser with an electron plasma. Phys. Fluids 25, 1049 (1982).
  19. B. Eliasson, P.K. Shukla. Formation and dynamics of relativistic electromagnetic solitons in plasmas containing high-and low-energy electron components. JETP Lett. 83, 447 (2006).
  20. D. Alontseva, A. Krasavin, A. Pogrebnjak, A. Russakova. The comparative study of the structure and phase composition of Ni-based coatings modified by plasma jet or electron beam. Acta Phys. Polon. A 123, 867 (2013).
  21. M.N. Shaikh, B. Zamir, R. Ali. TE surface waves in a plasma sandwich structure. Acta Phys. Polon. A 127, 1625 (2015).
  22. W. Lu, C. Huang, M. Zhou, W.B. Mori, T. Katsouleas. Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96, 165002 (2006).
  23. A.A. El-Bendary, W.F. El-Taibany, Kh.H. El-Shorbagy. Cherenkov radiation waves in inhomogeneous dusty plasma. Phys. Wave Phenom. 21, 226 (2013).