• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 1, p.51-59
https://doi.org/10.15407/ujpe62.01.0051    Paper

Guruparan S.1, Ravichandran V.2, Chinnathambi V.2, Rajasekar S.3

1 Department of Chemistry, Sri K.G.S. Arts College
(Srivaikuntam 628 619, Tamilnadu, India)
2 Department of Physics, Sri K.G.S. Arts College
(Srivaikuntam 628 619, Tamilnadu, India)
3 School of Physics, Bharathidasan University
(Tiruchirapalli 620 024, Tamilnadu, India)

Coexistence of Multiple Attractors, Hysteresis, and Vibrational Resonance in the Classical Morse Oscillator Driven by an Amplitude Modulated Signal

Section: Nonlinear Processes
Original Author's Text:  English

Abstract: We consider the classical Morse oscillator driven by an amplitude modulated signal with two widely different frequencies and , where . The dynamics of such oscillator is numerically studied for a specific set of parameters. We show the occurrence of coexistence of several period orbits, bifurcations of them, and hysteresis and vibrational resonance phenomena. We characterize the periodic and chaotic orbits, hysteresis, and vibrational resonance with the use of the bifurcation diagram and response amplitude.

Key words:  classical Morse oscillator, coexistence of multiple attractors, hysteresis, vibrational resonance, amplitude modulated signal.

References:

  1. P.M. Morse. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. E 34, 57 (1929).
     CrossRef
  2. G. Herzberg. Spectra of Diatomic Molecules (Van Nostrand, 1950).
  3. M.E. Goggin, P.W. Milonni. Driven Morse oscillator: Classical chaos, quantum theory, and photodissociation. Phys. Rev. A 37, 796 (1988).
     CrossRef
  4. J.R. Ackerhalft, P.W. Milonni. Chaos and incoherence in a model of multiple-photon excitation of molecular vibrations. Phys. Rev. A 34, 1211 (1986).
     CrossRef
  5. P.S. Dardi, S.K. Gray. Classical and quantum mechanical studies of hydrogen fluoride in an intense laser field. J. Chem. Phys. 77 (3), 1345 (1982).
     CrossRef
  6. S.K. Gray. Classical aspects of laser excitation of a Morse oscillator. J. Chem. Phys. 75 (1), 67 (1983).
     CrossRef
  7. K.M. Christoffel, J.M. Bowman. Classical trajectory studies of multiphoton and overtone absorption of hydrogen fluoride. J. Phys. Chem. 85 (15), 2159 (1981).
     CrossRef
  8. D. Beigie, S. Wiggins. Dynamics associated with a quasiperiodically forced Morse oscillator: Application to molecular dissociation. Phys. Rev. A 45 (7), 4803 (1992).
     CrossRef
  9. K. Abirami, S. Rajasekar, M.A.F. Sanjuan. Vibrational resonance in the Morse oscillator. Pramana J. of Phys. 81 (1), 127 (2013).
     CrossRef
  10. S. Behnia, A. Akhshani, M. Panahi, R. Asadi. Controlling chaos in damped and driven Morse oscillator via slavemaster feedback. Acta Physica Polon. A 123, 7 (2013).
     CrossRef
  11. Z. Jing, J. Deng, J. Yang. Bifurcations of periodic orbits and chaos in damped and driven Morse oscillator. Chaos, Solitons and Fractals 35, 486 (2008).
     CrossRef
  12. T. Kapitaniak, Yu. Maistrenko. Multiple choice bifurcations as a source of unpredictability in dynamical systems. Phys. Rev. E 58 (4), 5161 (1998).
     CrossRef
  13. A. Ray, D. Ghosh, A.R. Chowdhury. Topological study of multiple coexisting attractors in a nonlinear system. J. Phys. A: Math. Theor. 42 (38), 385102 (2009).
     CrossRef
  14. M. Dutta, H.F. Nusse, E. Ott, J.A. Yorke, G.H. Yuan. Multiple attractor bifurcations: A source of unpredictability in piecewise smooth systems. Phys. Rev. Lett. 83 (21), 4281 (1999) .
     CrossRef
  15. K. Sun, A. Di-li Duo Li-Kun, Y. Dong, H. Wang, K. Zhong. Multiple coexisting attractors and hysteresis in the generalized Ueda oscillator. Mathematical Problems in Engineering, Article ID 256092 (2013) .
     CrossRef
  16. V.M. Gandhimathi, S. Rajasekar, J. Kurths. Vibrational and stochastic resonances in two coupled overdamped anharmonic oscillators. Phys. Letts. A 360, 279 (2006).
     CrossRef
  17. K. Abirami, S. Rajasekar, M.A.F. Sanjuan. Vibrational and ghost-vibrational resonances in a modified Chua's circuit model equation. Int. J. Bifurcation Chaos 24, 1430031 (2014).
     CrossRef
  18. O. de Feo, G. Mario Maggio. Bifurcations in the colpitts oscillator: From theory to practice. Int. J. Bifurc. Chaos 13, 2917 (2003).
     CrossRef
  19. V.P. Lukomsky, I.S. Gandzha. Cascades of subharmonic stationary states in strongly non-linear driven planar systems. J. Sound and Vibration 275 (1), 351 (2004).
     CrossRef
  20. L. Gammaitoni, P. Hanggi, P. Jung, F. Marchesoni. Stochastic resonance. Rev. Mod. Phys. 70, 223 (1998).
     CrossRef
  21. P.S. Landa, P.V.E. McClintock. Vibrational resonance. J. Phys. A: Math. Gen. 33, L433 (2000) ].
     CrossRef
  22. S. Jeyakumari, V. Chinnathambi, S. Rajasekar, M.A.F. Sanjuan. Single and multiple vibrational resonance in a quintic oscillator with monostable potentials. Phys. Rev. E 80, 046608 (2009).
     CrossRef
  23. S. Rajasekar, K. Abirami, M.A.F. Sanjuan. Novel vibrational resonance in multistable systems. Chaos 21, 033106 (2011) .
     CrossRef
  24. E. Ullner, A. Zaikin, J. Garc’ıa-Ojalvo, R. B’ascones, J. Kurths. Vibrational resonance and vibrational propagation in excitable systems. Phys. Lett. A 312, 348 (2003).
     CrossRef
  25. A.A. Zaikin, L. Lopez, J.P. Baltanas, J. Kurths, M.A.F. Sanjuan. Phys. Rev. E 66, 011106 (2002).
     CrossRef
  26. S. Rajasekar, J. Used, A. Wagemakers, M.A.F. Sanjuan. Vibrational resonance in biological nonlinear maps. Commun. Nonlinear Sci. Numer. Simulat. 17, 3435 (2012) .
     CrossRef
  27. C. Jeevarathinam, S. Rajasekar, M.A.F. Sanjuan. Theory and numerics of vibrational resonance in Duffing oscillators with time-delayed feedback. Phys. Rev. E 83, 066205 (2011).
     CrossRef
  28. J.H. Yang, M.A.F. Sanjuan, H.G. Liu. Vibrational subharmonic and superharmonic resonances. Commun. Nonlinear Sci. Numer. Simulat. 30, 362 (2016) .
     CrossRef
  29. V. Ravichandran, V. Chinnathambi, S. Rajasekar. Homoclinic bifurcation and chaos in Duffing oscillator driven by an amplitude-modulated force. Physica A 376, 223 (2007).
     CrossRef
  30. J.H. Yang, X.B. Liu. Controlling vibrational resonance in a delayed multistable system driven by an amplitude-modulated signal. Phys. Scr. 82, 025006 (2010) 06].
  31. V.M. Gandhimathi, S. Rajasekar. Vibrational and stochastic resonances in two coupled overdamped anharmonic oscillators driven by an amplitude modulated force. Phys. Scr. 76, 693 (2007) .
     CrossRef
  32. M.J. Feigenbaum. Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19, 25 (1978).
     CrossRef
  33. M.J. Feigenbaum. Universal behavior in nonlinear systems. Los Alamos Science 1, 4 (1980).