• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2017, Vol. 62, N 1, p.20-32
https://doi.org/10.15407/ujpe62.01.0020    Paper

Havryliuk O.O., Semchuk O.Yu.

O.O. Chuiko Institute of Surface Chemistry, Nat. Acad. of Sci. of Ukraine
(17, General Naumov Str., Kyiv 03164, Ukraine; e-mail: gavrylyuk.oleksandr@gmail.com)

Formation of Periodic Structures on the Solid Surface under Laser Irradiation

Section: Optics, Lasers, and Quantum Electronics
Original Author's Text: Ukrainian

Abstract: Advances in the development of technologies aimed at the production of periodic structures on the surface of semiconductors, metals, and insulators have been reviewed. Particular attention was paid to the formation of periodic structures under laser irradiation. The results of both theoretical calculations and experimental researches of the phenomenon concerned are presented.

Key words: laser-induced periodic structures, laser annealing, temperature profile, nanocrystals.

References:

  1. Huin Cong Tu. Ph.D. thesis Research and Development of Laser Technology for the Modification of Electrophysical Characteristics of the Silicon–Silicon Dioxide System (St.-Petersburg National Research University of Information Technologies, Mechanics and Optics, 2014) (in Russian).
  2. O.O. Havryliuk, O.Yu. Semchuk, O.V. Steblova, A.A. Evtukh, L.L. Fedorenko, O.L. Bratus, S.O. Zlobin, M. Karlsteen. Influence of laser annealing on SiO films properties. Appl. Surf. Sci. 336, 217 (2015).
     CrossRef
  3. A. Glowacki, S.K. Brahma, H. Suzuki, C. Boit. Systematic characterization of integrated circuit standard components as stimulated by scanning laser beam. IEEE Trans. Device Mater. Rel. 7, 31 (2007).
     CrossRef
  4. F. Beaudoin, K. Sanchez, R. Desplats, P. Perdu, J.M. Nicot, J.P. Roux, M. Otte. Dynamic laser stimulation case studies. Microelectron. Rel. 45, 1538 (2005).
     CrossRef
  5. O.O. Havryliuk, O.Yu. Semchuk, O.L. Bratus, A.A. Evtukh, O.V. Steblova, L.L. Fedorenko. Study of thermophysical properties of crystalline silicon and silicon-rich silicon oxide layers. Appl. Surf. Sci. 302, 213 (2014).
     CrossRef
  6. A.V. Dvurechenskii. Pulse oriented crystallization of solids (laser annealing). Soros Obrazov. Zh. 85, 108 (2004) (in Russian).
  7. M. Baumeister, T. Scholz, K. Dickmann, F. Vollersten. Influence of Mie-scattering on high-speed micro-perforation considering brilliant laser radiation. J. Laser Appl. 22, No. 2, 48 (2010).
     CrossRef
  8. M.A. Vasiliev, M.M. Nishchenko, P.A. Gurin. Laser modification of the surface of titanium implants. Usp. Fiz. Met. 11, 209 (2010).
     CrossRef
  9. R. Varache. Ph.D. thesis Development, Characterization and Modeling of Interfaces for High Efficiency Silicon Heterojunction Solar Cells (Technische Universit¨at Berlin, 2012).
  10. A. Medvid, I. Dmitruk, P. Onufrijevs, I. Pundyk. Properties of nanostructure formed on SiO2/Si interface by laser radiation. Solid State Phenom. 131–133, 559 (2008).
     CrossRef
  11. A. Medvid, P. Onufrijevs, R. Jarimaviciute-Gudaitiene, E. Dauksta, I. Prosycevas. Formation mechanisms of nano and microcones by laser radiation on surfaces of Si, Ge, and SiGe crystals. Nanoscale Res. Lett. 8, 264 (2013).
     CrossRef
  12. A. Borowiec, H.K. Haugen. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl. Phys. Lett. 82, 4462 (2003).
     CrossRef
  13. B.K. Nayak, M.C. Gupta. Ultrafast laser-induced selforganized conical micro/nano surface structures and their origin. Opt. Lasers Eng. 48, 966 (2010).
     CrossRef
  14. V. Sava, T.L. Mitran, G. Socol, S. Antohe. Silicon surface structuring by XeCl excimer laser irradiation in atmospheric conditions. Digest J. Nanomater. Biostruct. 8, 61 (2013).
  15. B.K. Nayak, M.C. Gupta, K.W. Kolasinski. Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation. Appl. Phys. A 90, 399 (2008).
     CrossRef
  16. L.A. Golovan, I.O. Djun, A.E. Dokukina, S.V. Zabotnov, A.A. Ezhov, P.K. Kashkarov, N.E. Maslova, I.O. Ostapenko, V.I. Panov, V.U. Timoshenko. AFM investigation of nanoparticles formed on silicon surface by femtosecond laser pulses. Bull. Russ. Acad. Sci. Phys. 73, 39 (2009).
     CrossRef
  17. M. Bolle, S. Lazare. Characterization of submicrometer periodic structures produced on polymer surfaces with lowfluence ultraviolet laser radiation. J. Appl. Phys. 73, 3516 (1993).
     CrossRef
  18. J.F. Young, J.S. Preston, H.M. Driel, J.E. Sipe. Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass. Phys. Rev. B 27, 1155 (1983).
     CrossRef
  19. F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallinich, A. Ostendorf, B.N. Chichkov. Towards nanostructuring with femtosecond laser pulses. Appl. Phys. A 77, 229 (2003).
     CrossRef
  20. T.H.R. Crawford, A. Borowiec, H.K. Haugen. Femtosecond laser micromachining of grooves in silicon with 800 nm pulses. Appl. Phys. A 80, 1717 (2005).
     CrossRef
  21. I.A. Ostapenko, S.V. Zabotnov, G.D. Shandybina, L.A. Golovan', A.V. Chervyakov, Yu.V. Ryabchikov, V.V. Yakovlev, V.Yu. Timoshenko, V.K. Kashkarov. Micro- and nanostructuring of the crystalline silicon surface under the action of femtosecond laser pulses. Izv. Ross. Akad. Nauk Ser. Fiz. 70, 1315 (2006) (in Russian).
  22. K.E. Lapshin, A.Z. Obidin, V.N. Tokarev, V.Yu. Khomich, V.A. Shmakov, V.A. Yamshchikov. Formation of nanostructures on the silicon nitride surface under irradiation of F[2] laser. Fiz. Khim. Obrab. Mater. 1, 43 (2008) (in Russian).
  23. G. Miyaji, K. Miyazaki. Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses. Opt. Express 16, 16265 (2008).
     CrossRef
  24. M. Shen, J.E. Carey, C.H. Crouch, M. Kandyla, H.A. Stone, E. Mazur. High-density regular arrays of nanometerscale rods formed on silicon surfaces via femtosecond laser irradiation in water. Nano Lett. 8, 2087 (2008).
     CrossRef
  25. C. Radu, S. Simion, M. Zamfirescu, M. Ulmeanu, M. Enculescu, M. Radoiu. Silicon structuring by etching with liquid chlorine and fluorine precursors using femtosecond laser pulses. J. Appl. Phys. 110, 1063 (2011).
     CrossRef
  26. N.D. Vorzobova, Yu.E. Burunkova, V.G. Bulgakova, I.Yu. Denisyuk, N.M. Kalinin. Preparation of periodic structures in polymeric UV-hardened composite materials by laser interference lithography. Izv. Vyssh. Ucheb. Zaved. Priborostr. 54, No. 12, 62 (2011) (in Russian).
  27. J. Heitz, B. Reisinger, V. Fahrner. In Proceeding of the International Conference on Transparent Optical Networks (Coventry, 2012), p. 1.
  28. E. Rebollar, J. V’azquez de Aldana, I. Mart’ın-Fabiani, M. Hernandez, D.R. Rueda, T.A. Ezquerra, C. Domingo, P. Moreno, M. Castillejo. Assessment of femtosecond laser induced periodic surface structures on polymer films. Phys. Chem. Chem. Phys. 15, 11287 (2013).
     CrossRef
  29. Yu.K. Veryovkin, N.G. Bronnikova, V.V. Korolikhin, Yu.Yu. Gushina, V.N. Petryakov, D.O. Filatov, N.M. Bityurin, A.V. Kruglov, V.V. Levichev. Formation of twodimensional periodic nanostructures on the surface of fused quartz, polyimide, and polycrystalline diamond using the method of pulsed four-beam laser interference modification. Zh. Tekhn. Fiz. 73, N 6, 99 (2003) (in Russian).
  30. S.V. Makarov. Ph.D. thesis Nano- and microstructuring of metal and semiconductor surfaces in the air under the action of femtosecond laser pulses. (Lebedev Fiz. Inst. Ross. Akad. Nauk, 2014) (in Russian).
  31. S.A. Akhmanov, V.I. Emel'yanov, N.I. Koroteev, V.N. Semynogov. Influence of high-power laser radiation on the surface of semiconductors and metals: nonlinear optical effects and nonlinear-optical diagnostics. Usp. Fiz. Nauk 147, 675 (1985) (in Russian).
     CrossRef
  32. S.V. Zabotnov, I.A. Ostapenko, L.A. Golovan, V.Yu. Timoshenko, P.K. Kashkarov, G.D. Shandybina. Thirdharmonic generation from a silicon surface structured by femtosecond laser pulses. Quant. Electron. 35, 943 (2005).
     CrossRef
  33. T. Scheidt, E.G. Rohwer, H.M. von Bergmann, H. Stafast. Charge-carrier dynamics and trap generation in native Si/SiO2 interfaces probed by optical second-harmonic generation. Phys. Rev. B 69, 165314 (2004).
     CrossRef
  34. P.H. Neethling, T. Scheidt, E.G. Rohwer. Second harmonic generation as a technique to probe buried interfaces: research letter. South African J. Sci. 105, 282 (2009), http://hdl.handle.net/10520/EJC96944.
  35. V.P. Veiko, A.M. Skvortsov, V.I. Sokolov, Ph. Q. Tung, R.A. Khalecki, E.I. Efimov. Effect of laser irradiation on the structures properties such as SiO2/Si. Proc. SPIE 7996, 79960S (2010).
     CrossRef
  36. Z.Yu. Gotra, S.A. Osered'ko. Control of the surface layer properties in microelectronic technology with the help of laser light. Zarubezh. Elektron. Tekhn. 12, 3 (1985) (in Russian).
  37. J. Hl’avka, H. Jel’ınkov’a, K. Hamal, V. Prochock’y. Pulsed laser-induced recombination centers in silicon. J. Appl. Phys. 56, 1245 (1984).
     CrossRef
  38. E.I. Gurevich, S.V. Gurevich. Laser induced periodic surface structures induced by surface plasmons coupled via roughness. Appl. Surf. Sci. 302, 118 (2014) .
     CrossRef
  39. S.I. Anisimov, B.S. Luk'yanchuk. Selected problems of laser ablation theory. Phys. Usp. 45, 293 (2002).
     CrossRef
  40. Z. Wang, J. Li, X. Huang. Patterned structures of silicon nanocrystals prepared by laser annealing. Solid State Commun. 117, 383 (2001).
     CrossRef
  41. J. Richter, J. Meinertz, J. Ihlemann. Patterned laser annealing of silicon oxide films. Appl. Phys. A 104, 759 (2011).
     CrossRef
  42. D. Wang, J. Ihlemann, P. Schaaf. Complex patterned gold structures fabricated via laser annealing and dealloying. Appl. Surf. Sci. 302, 74 (2014) .
     CrossRef
  43. J. Bonse, J. Kr¨uger, S. H¨ohm, A. Rosenfeld. Femtosecond laser-induced periodic surface structures. J. Laser Appl. 24, 042006 (2012).
     CrossRef
  44. S. Richter, M. Heinrich, S. D¨oring. Nanogratings in fused silica: Formation, control, and applications. J. Laser Appl. 24, 042008 (2012).
     CrossRef
  45. I. Mingareev, T. Bonhoff, A. El-Sherif. Femtosecond laser post-processing of metal parts produced by laser additive manufacturing. J. Laser Appl. 25, 052009 (2013).
     CrossRef
  46. B. Tan, K. Venkatakrishnan. A femtosecond laser-induced periodical surface structure on crystalline silicon. J. Micromech. Microeng. 16, 1080 (2006).
     CrossRef
  47. Y. Huang, S. Liu, W. Li, Y. Liu, W. Yang. Two-dimensional periodic structure induced by single-beam femtosecond laser pulses irradiating titanium. Opt. Express 17 (23), 20756 (2009).
     CrossRef
  48. T. Huynh, A. Petit, N. Semmar. Picosecond laser induced periodic surface structure on copper thin films. Appl. Surf. Sci. 302, 109 (2014).
     CrossRef
  49. J.Z.P. Skolski, G.R.B.E. Romer, J.V. Obona, V. Ocelik, A.J. Huis in't Veld, J.Th.M. De Hosson. Laser-induced periodic surface structures: Fingerprints of light localization. Phys. Rev. B 85, 075320 (2012).
     CrossRef
  50. T.J.-Y. Derrien, R. Torres, T. Sarnet, M. Sentis, T.E. Itina. Formation of femtosecond laser induced surface structures on silicon: Insights from numerical modeling and single pulse experiments. Appl. Surf. Sci. 258, 9487 (2012).
     CrossRef
  51. G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N.N. Nedyalkov, M. Obara. Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates. Opt. Express 19, 19093 (2011).
     CrossRef
  52. M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu. Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser. ACS Nano 3, 4062 (2009).
     CrossRef
  53. J. Wang, C. Guo. Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals. Appl. Phys. Lett. 87, 251914 (2005).
     CrossRef
  54. T. Apostolova, A.A. Ionin, S.I. Kudryashov, L.V. Seleznev, D.V. Sinitsyn. Self-limited ionization in bandgap renormalized GaAs at high femtosecond laser intensities. Opt. Eng. 51, 121808 (2012).
     CrossRef
  55. Z. Zhang, Z. Wang, D. Wang, Y. Ding. Periodic antireflection surface structure fabricated on silicon by four-beam laser interference lithography. J. Laser Appl. 26, 012010 (2014).
     CrossRef
  56. M. Ellman, A. Rodr’ıguez, N. P’erez, M. Echeverria, Y. Verevkin, C. Peng, T. Berthou, Z. Wang, S. Olaizola, I. Ayerdi. High-power laser interference lithography process on photoresist: Effect of laser fluence and polarisation. Appl. Surf. Sci. 255, 5537 (2009).
     CrossRef
  57. O.O. Havryliuk, O.Yu. Semchuk. Propagation of temperature profiles in non-stoichiometric SiO films at two-beam laser annealing. Fiz. Khim. Tverd. Tila 15, 862 (2014) (in Ukrainian).
  58. O.O. Havryliuk. Theoretical study on laser annealing of non-stoichiometric SiO films. Khim. Fiz. Tekhnol. Poverkhni 5, 461 (2014).