• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 9, p.819-825
https://doi.org/10.15407/ujpe61.09.0819    Paper

Bulavin L.A.1,2, Gavryushenko D.A.1, Taradii K.V.1, Atamas’ N.A.1, Sysoev V.M.1

1 Taras Shevchenko National University of Kyiv
(2, Prosp. Academician Glushkov, Kyiv 03022, Ukraine)
sup>2 Institute for Safety Problems of Nuclear Power Plants, Nat. Acad. of Sci. of Ukraine
(12, Lysogirska Str., Bld. 106, Kyiv 03028, Ukraine)

Influence of Radiation on the Phase Transition Temperature in Liquids

Section: Soft Matter
Original Author's Text: Ukrainian

Abstract: The influence of radiation on the thermodynamic properties of liquid systems that are governed by the radiation-induced change in the chemical potentials of the liquid and its components has been studied. The irradiation of coexisting phases in the stationary state is shown to result in a shift of the phase transition point parameters. The temperature shift of the first-order phase transition under the influence of radiation is evaluated with regard for both the entropy and interaction factors in the chemical potential of the system.

Key words: radiation, phase transition, multicomponent system.


  1. I.G. Dragani’c, Radiolysis of water: a look at its origin and occurrence in the nature, Radiation Phys. Chem. 72, 181 (2005).   https://doi.org/10.1016/j.radphyschem.2004.09.012
  2. T. P’alfi, L. Wojn’arovits, and E. Tak’acs, Calculated and measured transient product yields in pulse radiolysis of aqueous solutions: Concentration dependence, Radiation Phys. Chem. 79, 1154 (2010).   https://doi.org/10.1016/j.radphyschem.2010.06.004
  3. K.O. Trachenko, M.T. Dove, and E.K. Salje, Atomistic modelling of radiation damage in zircon, J. Phys.:Condens. Matter 13, 1947 (2001).   https://doi.org/10.1088/0953-8984/13/9/317
  4. K.O. Trachenko, M.T. Dove, T. Geisler, I. Todorov, and B. Smith, Radiation damage effects and percolation theory, J. Phys.: Condens. Matter 16, S2623 (2004).   https://doi.org/10.1088/0953-8984/16/27/002
  5. K. Trachenko, E. Zarkadoula, I. Todorov, M. Dove, D. Dunstan, and K. Nordlund, Modeling high-energy radiation damage in nuclear and fusion applications, Nucl. Instr. Meth. Phys. Rev. B 277, 6 (2012).   https://doi.org/10.1016/j.nimb.2011.12.058
  6. E. Zarkadoula et al., The nature of high-energy radiation damage in iron, J. Phys.: Condens. Matter 25, 125402 (2013).   https://doi.org/10.1088/0953-8984/25/12/125402
  7. L. Malerba et al., Ab initio calculations and interatomic potentials for iron and iron alloys: Achievements within the Perfect Project, J. Nucl. Mater. 406, 7 (2010).   https://doi.org/10.1016/j.jnucmat.2010.05.016
  8. I.A. Shkrob, T.W. Marin, S.D. Chemerisov, and J.F. Wishar, Radiation induced redox reactions and fragmentation of constituent ions in ionic liquids. 1. Anions, J. Phys. Chem. B 115, 3872 (2011).   https://doi.org/10.1021/jp2003062
  9. K. Trachenko et al., Radiation damage in the bulk and at the surface, Mol. Simulat. 31, 355 (2005).   https://doi.org/10.1080/08927020500066825
  10. V.V. Brazhkin et al., "Liquid-gas" transition in the super-critical region: Fundamental changes in the particle dynamics, Phys. Rev. Lett. 111(14), 145901 (2011).   https://doi.org/10.1103/PhysRevLett.111.145901
  11. A.V. Chalyi, L.A. Bulavin, V.F. Chekhun et al., Universality classes and critical phenomena in confined liquid systems, Condens. Matter Phys. 16, 23008 (2013).   https://doi.org/10.5488/CMP.16.23008
  12. A.V. Chalyi and E.V. Zaitseva, A kinetic model of synaptic transmission on intercell interaction, Ukr. J. Phys. 54, 366 (2009).
  13. A.V. Chalyi and E.V. Zaitseva, Strange attractor in kinetic model of synaptic transmission, J. Phys. Studies 11, 322 (2007).
  14. V.M. Novikov, V.V. Ignat'ev, V.I. Fedulov, and V.N. Cherednikov, Liquid Salt NEI: Perspectives and Problems (Energoatomizdat, Moscow, 1990) (in Russian) [ISBN: 5-283-03791-6].
  15. M. Rosenthal, R. Briggs, and P. Haubenreich, Molten-salt reactor program. Semiannual progress report for period ending August 31, 1971, preprint ORNL-4728 (1972).
  16. S.A. Bznuni, V.S. Barashenkov, and V.M. Zhamkochyan, Perspective two-reactor electronuclear systems, Fiz. Elem. Chast. At. Yadra 34 977 (2003).
  17. A.K. Pikaev and V.I. Spitsyn, Modern Radiation Chemistry: Radiolysis of Gases and Fluids (Nauka, Moscow, 1986) (in Russian).
  18. D.A. Gavryushenko, The influence of irradiation on phase transition properies i n fluid systems, Dopov. Nats. Akad. Nauk Ukr., No. 8, 83 (2013).
  19. D.N. Zubarev, Mechanics (Consultants Bureau, New York, 1974).
  20. M. Kac, Probability and Related Topics in Physical Sciences (Amer. Math. Soc., New York, 1959).
  21. I. Prigogine, Mechanics (Interscience, New York, 1962).
  22. I. Prigogine, Introduction to Thermodynamics of Irreversible Processes (Interscience, New York, 1962).
  23. S.R. de Groot and P. Mazur, Nonequilibrium Thermodynamics (North-Holland, Amsterdam, 1963).
  24. L.A. Bulavin, D.A. Gavryushenko, and V.M. Sysoev, Molecular Physics (Znannya, Kyiv, 2006) (in Ukrainian).
  25. D. Kondepudi and I. Prigogine, Modern Thermodynamics: from Heat Engines to Dissipative Structures (Wiley, New York, 2014).   https://doi.org/10.1002/9781118698723
  26. P.A. Selishchev, Self Organization in Radiation Physics (Aspekt-Poligraf, Kiev, 2004) (in Russian).
  27. M.P. Kozlovskii and R.V. Romanik, Influence of an external field on the critical behavior of the 3D Ising-like model, J. Molec. Liq. 167, 14 (2012).   https://doi.org/10.1016/j.molliq.2011.12.003
  28. M.P. Kozlovskii, Recurrence relations for the three-dimensional Ising-like model in the external field, Condens. Matter. Phys. 8, 473 (2005).   https://doi.org/10.5488/CMP.8.3.473
  29. K. Trachenko, J.M. Pruneda, and E. Artacho, How the nature of the chemical bond governs resistance to amorphization by radiation damage, Phys. Rev. B 71, 184104 (2005).   https://doi.org/10.1103/PhysRevB.71.184104
  30. M. Chiapetto, C.S. Becquart, C. Domain, and L. Malerba, Nanostructure evolution under irradiation of Fe(C)MnNi model alloys for reactor pressure vessel steels, Nucl. Instr. Methods Phys. Res. B 352, 56 (2015).   https://doi.org/10.1016/j.nimb.2014.11.102
  31. V.A. Durov and E.P. Ageev, Thermodynamical Theory of Solutions of Nonelectrolytes (Moscow State Univ., Moscow, 1987) (in Russian).
  32. V.M. Sysoev and S.A. Terletskii, On the influence of the third component on the mutual solvability of two fluids, Zh. Fiz. Khim. 58, 370 (1984).
  33. N.A. Atamas, L.A. Bulavin, V.I. Kovalchuk, and A.M. Mayko, Influence of radiation on the local structure in a NaCl aqueous solution, Ukr. J. Phys. 60, 422 (2015).   https://doi.org/10.15407/ujpe60.05.0422
  34. T. Schlick, Molecular Modeling and Simulation: An Inter-disciplinary Guide (Springer, New York, 2002).   https://doi.org/10.1007/978-0-387-22464-0
  35. M.P. Allen and D.Y. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 2010).