• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 9, p.795-799
https://doi.org/10.15407/ujpe61.09.0795    Paper

Vasnetsov M.V.1, Bazhenov V.Yu.1, Ponevchinsky V.V.1, Plutenko D.O.1, Kudryavtseva A.D.2, Tcherniega N.V.2

1 Institute of Physics, Nat. Acad. of Sci. of Ukraine
(46, Prosp. Nauky, Kyiv 03680, Ukraine; e-mail: vasnet@hotmail.com)
2 P.N. Lebedev Institute, Russian Academy of Sciences
(53, Leninskii Prosp., Moscow 119991, Russia)

Temporal Characteristics of Afterglow in Artificial Opal

Section: Optics, Lasers, and Quantum Electronics
Original Author's Text: English

Abstract: We report the results of an experimental study of the temporal response of the artificial opal luminescence excited by UV pulses from a nitrogen laser at room temperature, liquid-nitrogen temperature, and in the intermediate range. While the response time does not exceed 15 ns at room temperature, the afterglow at liquid-nitrogen temperature was detected with a decay time of about 700 ms. We have revealed that the afterglow appears suddenly with just millisecond-range duration at a definite temperature of 130 ± 5 K. The temperature dependence of the afterglow is of importance for the explanation of surprising effects of the stimulated emission in a single nano-sized SiO2 globule and the second harmonic generation in the material at liquid-nitrogen temperature.

Key words: artificial opal, afterglow, nanocavity lasing.

References:

  1. V.N. Bogomolov, S.V. Gaponenko, I.N. Germanenko, A.M. Kapitonov, E.P. Petrov, N.V. Gaponenko, A.V. Prokofiev, A.N. Ponyavina, N.I. Silvanovich, and S.M. Samoilovich, Photonic band gap phenomenon and optical properties of artificial opals, Phys. Rev. E 55, 7619 (1997).  https://doi.org/10.1103/PhysRevE.55.7619
  2. W. St?ober, A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Coll. Interf. Sci. 26, 62 (1968).  https://doi.org/10.1016/0021-9797(68)90272-5
  3. V. Moiseyenko and M. Dergachov, in Quantum Optics and Laser Experiments, edited by Dr. Sergiy Lyagushyn (http://www.intechopen.com/books/quantum-optics-and-laser-experiments 2012).
  4. A.N. Gruzintsev, G.A. Emelchenko, V.M. Masalov, M. Romanelli, C. Barthou, P. Benalloul, and A. Ma?otre, Luminescent properties of synthetic opal, Inorg. Mater. 44, 159 (2008).  https://doi.org/10.1134/S0020168508020143
  5. M.V.Vasnetsov, V.Yu. Bazhenov, I.N.Dmitruk, A.D.Kudryavtseva, and N.V. Tcherniega, Luminescence response of synthetic opal under femtosecond laser pumping, J. of Luminescence 166, 233 (2015).  https://doi.org/10.1016/j.jlumin.2015.05.035
  6. C. Vandenbem and J.P. Vigneron, Mie resonances of dielectric spheres in face-centered cubic photonic crystals, J. Opt. Soc. Am. A 22, 1042 (2005).  https://doi.org/10.1364/JOSAA.22.001042
  7. I.V. Soboleva, S.A. Seregin, A.A. Fedyanin, and O.A. Aktsipetrov, Efficient bidirectional optical harmonics generation in three-dimensional photonic crystals, J. Opt. Soc. Am. B 28, 1680 (2011).  https://doi.org/10.1364/JOSAB.28.001680
  8. J. Martorell, R. Vilaseca, and R. Corbal?an, Second-harmonic generation in a photonic crystal, Appl. Phys. Lett. 70, 702 (1997).  https://doi.org/10.1063/1.118244
  9. B. Baranova and B.Y. Zel'dovich, Extension of holography to multifrequency fields, JETP Lett. 45, 717 (1987).
  10. V.S Gorelik, A.A. Esakov, and I.I. Zasavitskii, Low-temperature persistent afterglow in opal photonic crystals under pulsed UV excitation, Inorg. Mater. 46, 639 (2010).  https://doi.org/10.1134/S0020168510060142
  11. S.S. Kurbanov, Z.Sh. Shaymardanov, M.A. Kasymdzhanov, E.A. Zakhidov, P.K. Khabibullaev, and T.W. Kang, Modification of photoluminescence spectrum of artificial opal under external effects, Physica B 403, 1916 (2008).  https://doi.org/10.1016/j.physb.2007.10.245