• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 9, p.795-799
https://doi.org/10.15407/ujpe61.09.0795    Paper

Vasnetsov M.V.1, Bazhenov V.Yu.1, Ponevchinsky V.V.1, Plutenko D.O.1, Kudryavtseva A.D.2, Tcherniega N.V.2

1 Institute of Physics, Nat. Acad. of Sci. of Ukraine
(46, Prosp. Nauky, Kyiv 03680, Ukraine; e-mail: vasnet@hotmail.com)
2 P.N. Lebedev Institute, Russian Academy of Sciences
(53, Leninskii Prosp., Moscow 119991, Russia)

Temporal Characteristics of Afterglow in Artificial Opal

Section: Optics, Lasers, and Quantum Electronics
Original Author's Text: English

Abstract: We report the results of an experimental study of the temporal response of the artificial opal luminescence excited by UV pulses from a nitrogen laser at room temperature, liquid-nitrogen temperature, and in the intermediate range. While the response time does not exceed 15 ns at room temperature, the afterglow at liquid-nitrogen temperature was detected with a decay time of about 700 ms. We have revealed that the afterglow appears suddenly with just millisecond-range duration at a definite temperature of 130 ± 5 K. The temperature dependence of the afterglow is of importance for the explanation of surprising effects of the stimulated emission in a single nano-sized SiO2 globule and the second harmonic generation in the material at liquid-nitrogen temperature.

Key words: artificial opal, afterglow, nanocavity lasing.


  1. V.N. Bogomolov, S.V. Gaponenko, I.N. Germanenko, A.M. Kapitonov, E.P. Petrov, N.V. Gaponenko, A.V. Prokofiev, A.N. Ponyavina, N.I. Silvanovich, and S.M. Samoilovich, Photonic band gap phenomenon and optical properties of artificial opals, Phys. Rev. E 55, 7619 (1997).  https://doi.org/10.1103/PhysRevE.55.7619
  2. W. St?ober, A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Coll. Interf. Sci. 26, 62 (1968).  https://doi.org/10.1016/0021-9797(68)90272-5
  3. V. Moiseyenko and M. Dergachov, in Quantum Optics and Laser Experiments, edited by Dr. Sergiy Lyagushyn (http://www.intechopen.com/books/quantum-optics-and-laser-experiments 2012).
  4. A.N. Gruzintsev, G.A. Emelchenko, V.M. Masalov, M. Romanelli, C. Barthou, P. Benalloul, and A. Ma?otre, Luminescent properties of synthetic opal, Inorg. Mater. 44, 159 (2008).  https://doi.org/10.1134/S0020168508020143
  5. M.V.Vasnetsov, V.Yu. Bazhenov, I.N.Dmitruk, A.D.Kudryavtseva, and N.V. Tcherniega, Luminescence response of synthetic opal under femtosecond laser pumping, J. of Luminescence 166, 233 (2015).  https://doi.org/10.1016/j.jlumin.2015.05.035
  6. C. Vandenbem and J.P. Vigneron, Mie resonances of dielectric spheres in face-centered cubic photonic crystals, J. Opt. Soc. Am. A 22, 1042 (2005).  https://doi.org/10.1364/JOSAA.22.001042
  7. I.V. Soboleva, S.A. Seregin, A.A. Fedyanin, and O.A. Aktsipetrov, Efficient bidirectional optical harmonics generation in three-dimensional photonic crystals, J. Opt. Soc. Am. B 28, 1680 (2011).  https://doi.org/10.1364/JOSAB.28.001680
  8. J. Martorell, R. Vilaseca, and R. Corbal?an, Second-harmonic generation in a photonic crystal, Appl. Phys. Lett. 70, 702 (1997).  https://doi.org/10.1063/1.118244
  9. B. Baranova and B.Y. Zel'dovich, Extension of holography to multifrequency fields, JETP Lett. 45, 717 (1987).
  10. V.S Gorelik, A.A. Esakov, and I.I. Zasavitskii, Low-temperature persistent afterglow in opal photonic crystals under pulsed UV excitation, Inorg. Mater. 46, 639 (2010).  https://doi.org/10.1134/S0020168510060142
  11. S.S. Kurbanov, Z.Sh. Shaymardanov, M.A. Kasymdzhanov, E.A. Zakhidov, P.K. Khabibullaev, and T.W. Kang, Modification of photoluminescence spectrum of artificial opal under external effects, Physica B 403, 1916 (2008).  https://doi.org/10.1016/j.physb.2007.10.245