• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 9, p.774-779
https://doi.org/10.15407/ujpe61.09.0774    Paper

Sizhuk A.S.

Faculty of Radiophysics, Electronics, and Computer Systems,
Taras Shevchenko National University of Kyiv
(64/13, Volodymyrs’ka Str., Kyiv 01601, Ukraine; e-mail: cannabiss@mail.univ.kiev.ua)

The Transmission Spectrum of the Mixture of CO and HF for the Time-Dependent Density of CO

Section: Atoms and Molecules
Original Author's Text: English

Abstract: The gas phase spectra of a mixture of hydrogen fluoride (HF) and carbon oxide (CO) are obtained for the interval from 3838 to 3854 cm-1. Using the Fourier transform infrared (FTIR) broadband spectroscopy technique, the arising P-heads of the fundamental and hot bands of OC–HF complex are observed with increasing the pressure of the CO component, while the HF compound has a fixed amount of molecules. The dependence of the integral change in the transmitted intensity on the pressure of carbon monoxide is analyzed in vicinities of the P-heads of the fundamental band at 3939.12 cm-1 and the hot band at 3944.5 cm-1.

Key words: Fourier spectroscopy, hydrogen fluoride, carbon monoxide, time-dependent density.


  1. A.C. Legon, P.D. Soper, and W.H. Flygare, The rotational spectrum, H, 19F nuclear spin–nuclear spin coupling, D nuclear quadrupole coupling, and molecular geometry of a weakly bound dimer of carbon monoxide and hydrogen fluoride, J. Chem. Phys. 74(9), 4944 (1981).   https://doi.org/10.1063/1.441747
  2. G.T. Fraser and A.S. Pine, Isotope effects in the high-resolution infrared spectrum of OC–HF, J. Chem. Phys. 88, 4147 (1988).   https://doi.org/10.1063/1.453821
  3. J. Han, A.L. McIntosh, C.L. Hartz, and J.W. Bevan, A rovibrational analysis of the 1 and 2 bands of OC–DF by supersonic jet FTIR spectroscopy, Chem. Phys. Lett. 264, 411 (1997).   https://doi.org/10.1016/S0009-2614(96)01333-4
  4. Z. Wang and J.W. Bevan, Diode laser spectroscopy of the hydrogen bond vibration 2 OC–HF in a continuous wave supersonic jet, J. Chem. Phys. 91, 3335 (1989).   https://doi.org/10.1063/1.457642
  5. K. McMillan, D. Bender, M. Eliades, D. Danzeiser, B.A. Wofford, and J.W. Bevan, Supersonic molecular beam and static gas phase spectroscopy of intermolecular hot bands associated with 1 16O 12C–1H19F, Chem. Phys. Lett. 152, 87 (1988).   https://doi.org/10.1016/0009-2614(88)87333-0
  6. G.A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures (Springer, Berlin, 1991) [ISBN: 3-540-50839-2].   https://doi.org/10.1007/978-3-642-85135-3
  7. P. Hobza, in Annual Reports on the Progress of Chemistry, Section C, Physical Chemistry (Royal Soc. Chemistry, Cambridge, 2004), p. 3.
  8. J.E.D. Bene and M.J.T. Jordan, Vibrational spectroscopy of the hydrogen bond: An ab initio quantum-chemical perspective, Int. Rev. Phys. Chem. 18, 119 (1999).   https://doi.org/10.1080/014423599230026
  9. G. Gilli and P. Gilli, Towards an unified hydrogen-bond theory, J. Mol. Struct. 552, 1 (2000).   https://doi.org/10.1016/S0022-2860(00)00454-3
  10. V.K. Pogorelyi, Weak hydrogen bonds Russ. Chem. Rev. 46, 316 (1977).   https://doi.org/10.1070/RC1977v046n04ABEH002134
  11. G. Gilli and P. Gilli, The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory (Oxford Univ. Press, Oxford, New York, 2009).   https://doi.org/10.1093/acprof:oso/9780199558964.001.0001
  12. Y. Mar’echal, The Hydrogen Bond and the Water Molecule: the Physics and Chemistry of Water, Aqueous and Bio Media (Elsevier, Amsterdam, 2007).
  13. J.C. Speakman, The Hydrogen Bond and Other Intermolecular Forces (Chemical Society, London, 1975) [ISBN 10: 085186919X].
  14. P. Schuster, G. Zundel, and C. Sandorfy, The Hydrogen Bond: Recent Developments in Theory and Experiments (North-Holland, Amsterdam, 1976).
  15. T.A. Dolenko et al., Raman Spectroscopy of Water-Ethanol Solutions: The Estimation of Hydrogen Bonding Energy and the Appearance of Clathrate-like Structures in Solutions, J. Phys. Chem. A 119, 10806 (2015).   https://doi.org/10.1021/acs.jpca.5b06678
  16. M.S. Ghoraishi et al., Clustering mechanism of ethanol-water mixtures investigated with photothermal microfluidic cantilever deflection spectroscopy, Sci. Reps. 6, 23966 (2016).   https://doi.org/10.1038/srep23966
  17. E.K. Kyr¨o, P. Shoja-Chaghervand, K. Mcmillan, M. Eliades, D. Danzeiser, and J.W. Bevan, Rotational-vibration analysis of the = 0, 6 + 1 − 6 subband in the hydrogen-bonded system O12C···1H19F, J. Chem. Phys. 79, 78 (1983).   https://doi.org/10.1063/1.445516
  18. K.W. Jucks and R.E. Miller, The effect of vibrational state mixing on the predissociation lifetime of 1 excited OC—HF, J. Chem. Phys. 86, 6637 (1987).   https://doi.org/10.1063/1.452410
  19. Mohsen Razavy, Quantum Theory of Tunneling (World Scientific, Singapore, 2003) [ISBN: 981-238-018-3].
  20. L.A. Rivera-Rivera, Z. Wang, B.A. McElmurry, R.R. Lucchese, J.W. Bevan, and G. Kanschat, Morphing a Vibrationally-Complete Ground State Potential for the Hydrogen Bond OC–HF, Chem. Phys. 390, 42 (2011).   https://doi.org/10.1016/j.chemphys.2011.10.001