• Українська
  • English

< | Next issue >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 9, p.843-849
https://doi.org/10.15407/ujpe61.09.0843    Paper

Bormotova I.M., Kopteva E.M.

1 Institute of Physics, Faculty of Philosophy & Science, Silesian University in Opava
(Bezruˇcovo n´am. 13, 74601 Opava, Czech Republic; e-mail: ekopterix@gmail.com)
2 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research
(Dubna 141980, Moscow region, Russia; e-mail: q_Leex@mail.ru)

Friedmann Cosmological Models with Various Equations of State of Matter

Section: Astrophysics and Cosmology
Original Author's Text: English

Abstract: The Friedmann models of the universe filled with various types of matter are considered. For these models, the cosmological parameters are constructed. Some alternative types of matter with negative pressure are considered instead of cosmological constant. It is shown that the model with dust and domain walls leads to different types of the universe evolution depending on the ratio between constants of the model. The case where the resulting model is consistent with the cosmological observations is represented.

Key words: Friedmann models, acceleration of the universe, domain walls, radiation, negative pressure.


  1. S.M. Carroll, The cosmological constant, Liv. Rev. Rel. 4, 1 (2001)].   https://doi.org/10.12942/lrr-2001-1
  2. S. Perlmutter et al., Supernova cosmology project collaboration, Astrophys. J. 517, 565 (1999).   https://doi.org/10.1086/307221
  3. . A. Ishibashi and R.M. Wald, Can the acceleration of our universe be explained by the effects of inhomogeneities? Class. Quant. Grav. 23, 235 (2006)].   https://doi.org/10.1088/0264-9381/23/1/012
  4. V.H. Cardenas, Dark energy, matter creation and curvature, Eur. Phys. J. C 72, 1 (2012).   https://doi.org/10.1140/epjc/s10052-012-2149-0
  5. S. Tsujikawa, Quintessence: A Review, Class. Quant. Grav. 30, 214003 (2013).   https://doi.org/10.1088/0264-9381/30/21/214003
  6. R.A. Battye, M. Bucher, and D. Spergel, Domain wall dominated universes, e-print astroph/9908047, (1999).
  7. A. Friedland, H. Murayama, and M. Perelstein, Domain walls as dark energy, e-print astroph/0205520, (2003).
  8. E.M. Kopteva, The homogeneous and isotropic universe with domain walls, Bull. Dnepropetr. Nat. Univ., Phys. Radioel. 12, 161 (2004).
  9. A. Lazanu, C.J.A.P. Martins, and E.P.S. Shellard, Contribution of domain wall networks to the CMB power spectrum, e-print arXiv:1505.03673 [astro-ph.CO].
  10. A.V. Klimenko and V.A. Klimenko, The geometric interpretation of the cosmological repulsion forces, e-print arXiv: 1206.0209 (2012).
  11. Ya.B. Zel'dovich and I.D. Novikov, Relativistic Astro-physics, Vol. II. The Structure and Evolution of the Universe (Dover, New York, 1997).
  12. D. Kramer et al., Exact Solutions of Einstein's Field Equations (Energoizdat, Moscow, 1982) (in Russian).
  13. Z. Perjes, Perturbed Friedmann cosmologies filled with dust and radiation, e-print arXiv:astroph/0102187 (2001).
  14. R. Coquereaux and A. Grossmann, Analytic discussion of spatially closed Friedman universes with cosmological constant and radiation pressure, Ann. Phys. (N.Y.) 143, 296 (1982).   https://doi.org/10.1016/0003-4916(82)90030-6
  15. M.P. Korkina, E.M. Kopteva, and O.Ju. Orlyansky, The Friedman models with the pressure and the cosmological constant, Ukr. J. Phys. 50, 11 (2005).
  16. I.M. Bormotova and M.P. Korkina, Dynamics of the Friedmann solutions under nonzero cosmological constant, Bull. Dnepropetr. Nat. Univ., Rocket Space Eng. 14, 2, 16 (2010).
  17. L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields (Pergamon Press, Oxford, 1983).
  18. A. Burgazli, M. Eingorn, and A. Zhuk, Rigorous theoretical constraint on constant negative EoS parameter and its effect for the late Universe, Eur. Phys. J. C 75, 118 (2015).   https://doi.org/10.1140/epjc/s10052-015-3335-7