• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 9, p.835-842
https://doi.org/10.15407/ujpe61.09.0835    Paper

Kuryliuk V.V., Semchuk S.S.

Taras Shevchenko National University of Kyiv, Faculty of Physics (64/13, Volodymyrs’ka Str., Kyiv 01601, Ukraine; e-mail: kuryluk@univ.kiev.ua)

Molecular Dynamics Calculation of Thermal Conductivity in a-SiO2 and an a-SiO2-Based Nanocomposite

Section: Nanosystems
Original Author's Text: Ukrainian

Abstract: Thermal conductivity in amorphous SiO2 (α-SiO2) has been studied in a wide range of temperatures, by using the nonequilibrium molecular dynamics method and the Beest–Kramer–Santen, Tersoff, and Vashishta empirical potentials. The thermal conductivity of an α-SiO2-based com-posite with Si nanocrystals is calculated with the use of the Tersoff potential. The thermal conductivity of the nanocomposite is shown to firstly decrease and then to increase, as the silicon volumetric ratio grows. The obtained results are explained by the enhanced scattering of thermal vibrations at the matrix–Si nanocrystal boundaries.

Key words: thermal conductivity coefficient, molecular dynamics, nanocomposite, amorphous SiO2, nanocrystal.

References:

  1. Silica: Physical Behavior, Geochemistry, and Materials Applications. Series: Reviews in Mineralogy, Vol. 29, edited by P.J. Heaney, C.T. Prewitt, and G.V. Gibbs (Mineral. Soc. of America, 1994).
  2. A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10, 569 (2011).   https://doi.org/10.1038/nmat3064
  3. Z.-Y. Ong and E. Pop, Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO 2, Phys. Rev. B 81, 155408 (2010).   https://doi.org/10.1103/PhysRevB.81.155408
  4. H.-T. Chang, C.-C. Wang, J.-C. Hsu, M.-T. Hung, P.-W. Li, and S.-W. Lee, High quality multifold Ge/Si/Ge composite quantum dots for thermoelectric materials,Appl. Phys. Lett. 102, 101902 (2013).   https://doi.org/10.1063/1.4794943
  5. O. Korotchenkov, A. Nadtochiy, V. Kuryliuk, C.-C. Wang, P.-W. Li, and A. Cantarero, Thermoelectric energy conversion in layered structures with strained Ge quantum dots grown on Si surfaces, Eur. Phys. J. B 87, 64 (2014).   https://doi.org/10.1140/epjb/e2014-50074-8
  6. H.-T. Chang, S.-Y. Wang, and S. Wei, Designer Ge/Si composite quantum dots with enhanced thermoelectric properties Nanoscale 6, 3593 (2014).   https://doi.org/10.1039/c3nr06335f
  7. A. Majumdar, Thermoelectricity in semiconductor nanostructures, Science 303, 777 (2004).   https://doi.org/10.1126/science.1093164
  8. R.C. Zeller and R.O. Pohl, Thermal conductivity and specific heat of noncrystalline solids, Phys. Rev. B 4, 2029 (1971)].   https://doi.org/10.1103/PhysRevB.4.2029
  9. J.J. Freeman and A.C. Anderson, Thermal conductivity of amorphous solids, Phys. Rev. B 34, 5684 (1986).   https://doi.org/10.1103/PhysRevB.34.5684
  10. P.B. Allen and J.L. Feldman, Thermal conductivity of glasses: theory and application to amorphous Si, Phys. Rev. B 62, 645 (1989).   https://doi.org/10.1103/physrevlett.62.645
  11. P.B. Allen, J.L. Feldman, J. Fabian, and F. Wooten, Diffusons, locons and propagons: Character of atomic vibrations in amorphous Si, Philos. Mag. B 79, 1715 (1999).   https://doi.org/10.1080/13642819908223054
  12. V. Kuryliuk, A. Nadtochiy, O. Korotchenkov, C.-C. Wang, and P.-W. Li, A model for predicting the thermal conductivity of SiO2/Ge nanoparticle composites, Phys. Chem. Chem. Phys. 17, 13429 (2015).   https://doi.org/10.1039/C5CP00129C
  13. . S. Shenogin,A. Bodapati, P.Keblinski, andA.J.H.McGau-ghey, Predicting the thermal conductivity of inorganic and polymeric glasses: The role of anharmonicity, J. Appl. Phys. 105, 034906 (2009).   https://doi.org/10.1063/1.3073954
  14. X. Li and R. Yang, Equilibrium molecular dynamics simulations for the thermal conductivity of Si/Ge nanocomposites, J. Appl. Phys. 113, 104306 (2013).   https://doi.org/10.1063/1.4794815
  15. J.B. Haskins, A. Kinaci, and T. Cagin, Thermal conductivity of Si-Ge quantum dot superlattices, Nanotechnology 22, 155701 (2011).   https://doi.org/10.1088/0957-4484/22/15/155701
  16. M.-J. Huang and T.-M. Chang, Thermal transport within quantum-dot nanostructured semiconductors, Int. J. Heat Mass Tran. 55, 2800 (2012).   https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.001
  17. B.W.H. van Beest, G.J. Kramer, and R.A. van Santen, Force fields for silicas and aluminophosphates based on ab initio calculations, Phys. Rev. Lett. 64, 1955 (1990).   https://doi.org/10.1103/PhysRevLett.64.1955
  18. P. Jund and R. Jullien, Molecular-dynamics calculation of the thermal conductivity of vitreous silica, Phys. Rev. B 59, 13707 (1999).   https://doi.org/10.1103/PhysRevB.59.13707
  19. A.J.H. McGaughey and M. Kaviany, Thermal conductivity decomposition and analysis using molecular dynamics simulations: Part II. Complex silica structures, Int. J. Heat Mass Tran. 47, 1799 (2004).   https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.009
  20. S. Munetoh, T. Motooka, K. Moriguchi, and A. Shintani, Interatomic potential for Si-O systems using Tersoff parameterization, Comput. Mater. Sci. 39, 334 (2007).   https://doi.org/10.1016/j.commatsci.2006.06.010
  21. J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Phys. Rev. B 39, 5566 (1989).   https://doi.org/10.1103/PhysRevB.39.5566
  22. J. Yeo, Z.S. Liu, and T.Y. Ng, Enhanced thermal characterization of silica aerogels through molecular dynamics simulation, Model. Simul. Mater. Sci. Eng. 21, 075004 (2013).   CrossRef
  23. P. Vashishta, R.K. Kalia, J.P. Rino, and I. Ebbsjo, Interaction potential for SiO2: A molecular-dynamics study of structural correlations, Phys. Rev. B 41, 12197 (1990).   https://doi.org/10.1103/PhysRevB.41.12197
  24. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comp. Phys. 117, 1 (1995).   https://doi.org/10.1006/jcph.1995.1039
  25. F. M¨uller-Plathe, A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity, J. Chem. Phys. 106, 608 (1997).   https://doi.org/10.1063/1.473271
  26. C.Z. Wang, C.T. Chan, and K.M. Ho, Tight-binding molecular-dynamics study of phonon anharmonic effects in silicon and diamond, Phys. Rev. B 42, 11276 (1990).   https://doi.org/10.1103/PhysRevB.42.11276
  27. D.G. Cahill, Thermal conductivity measurement from 30 to 750 K: the 3w method, Rev. Sci. Instrum. 61, 802 (1990).   https://doi.org/10.1063/1.1141498
  28. J.M. Carpenter and D.L. Price, Correlated motions in glasses studied by coherent inelastic neutron scattering, Phys. Rev. Lett. 54, 441 (1985).   https://doi.org/10.1103/PhysRevLett.54.441