• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 8, p.747-752
http://dx.doi.org/10.15407/ujpe61.08.0747    Paper

Lysenkov E.A.1, Klepko V.V.2

1 V.O. Sukhomlynskyi National University of Mykolayiv
(24, Nikols’ka Str., Mykolayiv 54030, Ukraine; e-mail: ealysenkov@ukr.net)
2 Institute of Macromolecular Chemistry, Nat. Acad. of Sci. of Ukraine
(148, Kharkivske Road, Kyiv 02160, Ukraine)

Pressure Effects on the Percolation Behavior of Systems Based on Polyethylene Oxide and Carbon Nanotubes

Section: Nanosystems
Original Author's Text: Ukrainian

Abstract: The percolation behavior of systems based on polyethylene oxide and carbon nanotubes (CNTs) and its dependence on the external pressure in the interval from 0.1 to 150 MPa have been studied,by using the method of impedance spectroscopy. As the external pressure grows, the percolation threshold is found to decrease from 0.3% to 0.14%, with the critical index of conductivity changing from 1.95 to 2.73. The change of critical indices testifies to a structural rearrangement of CNTs in the polymer matrix from their statistical distribution to compact aggregates. The experimental results are described well in the framework of the modified McLachlan model, which considers the dependence of the percolation threshold on the pressure.

Key words: polymer nanocomposites, carbon nanotubes, conductivity, percolation behavior,
external pressure.


  1. . J.R. Potts, D.R. Dreyer, C.W. Bielawski, and R.S. Ruof, Polymer 52, 5 (2011).   CrossRef
  2. J.-C. Huang, Adv. Polym. Tech. 21, 299 (2002).   CrossRef
  3. Y. Prilutski, S. Durov, L. Bulavin, V. Pogorelov, Y. Astashkin, V. Yashchuk, T. Ogul'chansky, E. Buzaneva, and G. Andrievsky, Mol. Cryst. Liq. Cryst. 324, 65 (1998).   CrossRef
  4. M. Moniruzzaman and K.I. Winey, Macromolecules 39, 5194 (2006).   CrossRef
  5. E. Lysenkov, I. Melnyk, L. Bulavin, V. Klepko, and N. Lebovka, in Physics of Liquid Matter: Modern Problems, edited by L. Bulavin and N. Lebovka (Springer, Berlin, 2015), p. 165.   CrossRef
  6. E. Hammel, X. Tang, M. Trampert, T. Schmitt, K. Mauthner, A. Eder, and P. Potschke, Carbon 42, 1153 (2004).   CrossRef
  7. W.B. Lu, J. Wu, J. Song, K.C. Hwang, L.Y. Jiang, and Y. Huang, Comput. Method. Appl. Mech. Eng. 197, 3261 (2008).   CrossRef
  8. Q. Li, Q. Xue, L. Hao, X. Gao, and Q. Zheng, Compos. Sci. Technol. 68, 2290 (2008).   CrossRef
  9. Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotisa, Prog. Polym. Sci. 35, 357 (2010).   CrossRef
  10. E.A. Lysenkov, V.V. Klepko, and Y.V. Yakovlev, J. Nano Electron. Phys. 7, 01031 (2015).
  11. J. Zavickis, M. Knite, K. Ozols, and G. Malefan, Mater. Sci. Eng. 31, 472 (2011).   CrossRef
  12. C. Lin, H. Wang, and W. Yang, J. Appl. Phys. 108, 013509 (2010).   CrossRef
  13. C. Lin, H. Wang, and W. Yang, J. Zhejiang Univ. Sci. A 11, 822 (2010).   CrossRef
  14. M.H.G. Wichmann, S.T. Buschhorn, L. Boger, R. Adelung, and K. Schulte, Nanotechnology 19, 475503 (2008).   CrossRef   PubMed
  15. J. Hwang, J. Jang, K. Hong, K.N. Kim, J.H. Han, K. Shin, and C.E. Park, Carbon 49, 106 (2011).   CrossRef
  16. A. Kishimoto, Y. Takagawa, T. Teranishi, and H. Hayashi, Mater. Lett. 65, 2197 (2011).   CrossRef
  17. A.V. Melezhik, Yu.I. Sementsov, and V.V. Yanchenko, Zh. Prikl. Khim. 78, 938 (2005).
  18. A. Kyritsis, P. Pissis, and J. Grammatikakis, J. Polym. Sci. B 33, 1737 (1995).   CrossRef
  19. E.A. Lysenkov and V.V. Klepko, J. Nano Electron. Phys. 5, 03052 (2013).
  20. V.V. Klepko and E.A. Lysenkov, Ukr. J. Phys. 60, 944 (2015).   CrossRef
  21. D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Francis, London, 1994).
  22. S. Kirkpatrick, Phys. Rev. Lett. 27, 1722 (1971).   CrossRef
  23. D.S. McLachlan, C. Chiteme, W.D. Heiss, and J. Wu, Physica B 338, 256 (2003).   CrossRef
  24. D.A.G. Bruggeman, Ann. Phys. 24, 636 (1935).   CrossRef
  25. D.S. McLachlan, M. Blaszkiewicz, and R.E. Newnham, J. Amer. Ceram. Soc. 73, 2187 (1990).   CrossRef
  26. E.A. Lysenkov, Y.V. Yakovlev, and V.V. Klepko, Ukr. J. Phys. 58, 378 (2013).   CrossRef