• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 8, p.741-746
http://dx.doi.org/10.15407/ujpe61.08.0741    Paper

Peleshchak R.M., Kuzyk O.V., Dan’kiv O.O.

Ivan Franko State Pedagogical University of Drohobych
(24, Ivan Franko Str., Drohobych 82100, Lviv region, Ukraine; e-mail: delenkonadia@mail.ru)

Formation of Periodic Structures under the Influence of an Acoustic Wave in Semiconductors with a Two-Component Defect Subsystem

Section: Solid Matter
Original Author's Text: Ukrainian

Abstract: A deformation-diffusion model describing the formation of periodic structures in semiconduc-tors with a two-component defect subsystem by means of an acoustic wave has been devel-oped. The theory makes allowance for the deformation created by the acoustic wave and point defects. In the framework of this model, a possibility of the ultrasound-stimulated hydrogen passivation of electrically active Cl centers in the CdTe semiconductor and the size dispersion reduction of strained InAs/GaAs quantum dots doped with an isovalent impurity are analyzed.

Key words: point defects, acoustic wave, diffusion, deformation.


  1. 1. S. Ostapenko, Appl. Phys. A 69, 225 (1999).   CrossRef
  2. O.Ya. Olikh, K.V. Voytenko, and R.M. Burbelo, J. Appl. Phys. 117, 044505 (2015).   CrossRef
  3. I.V. Ostrovskii, A.B. Nadtochii, and A.A. Podolyan Fiz. Tekh. Poluprovodn. 36, 389 (2002).
  4. R.M. Peleshchak, O.V. Kuzyk, and O.O. Dan'kiv, Condens. Matter Phys. 17, 23601 (2014).   CrossRef
  5. R.M. Peleshchak, O.O. Dan'kiv, and O.V. Kuzyk, Zh. Fiz. Dosl. 15, 3602 (2011).
  6. B. Boltaks, Diffusion and Point Defects in Semiconductors (Mir, Moscow, 1987).
  7. Handbook of Photovoltaic Science and Engineering, edited by A. Luque and S. Hegedus (Wiley, New York, 2003).
  8. V.I. Emel'yanov, Laser Phys. 18, 1435 (2008).   CrossRef
  9. R.M. Peleshchak and O.V. Kuzyk, Ukr. J. Phys. 54, 702 (2009).
  10. J. Kreissl, M. Moehrle, A. Sigmund, R. Bochnia, P. Harde, and W. Ulrici, in Proceedings of the International Con-ference on Indium Phosphide and Related Materials'2000, May 14–18, 2000, Williamsburg, Virginia, USA (2000), p. 142.
  11. V.B. Brytan, R.M. Peleshchak, D.I. Tsyutsyura, and D.V. Korbutyak, Fiz. Khim. Tverd. Tila 10, 41 (2009).
  12. K. Ding, U. Aeberhard and O. Astakhov, J. Non-Cryst. Solids 358, 2145 (2012).   CrossRef
  13. B.N. Zvonkov, I.A. Karpovich, N.V. Baidus', Fiz. Tekh. Poluprovodn. 35, 92 (2001).
  14. N.N. Ledentsov, V.M. Ustinov, V.A. Shchukin, P.S. Kop'ev, Zh.I. Alfyorov, and D. Bimberg, Fiz. Tekh. Poluprovodn. 32, 385 (1998).
  15. R.M. Peleshchak, S.K. Guba, O.V. Kuzyk, I.V. Kurilo, and O.O. Dan'kiv, Semicond. 47, 349 (2013).   CrossRef
  16. T. Inoue, S. Kido, K. Sasayama, T. Kita, and O. Wada, J. Appl. Phys. 108, 063524 (2010).   CrossRef
  17. M. Hargittai and I. Hargittai, Advances in Molecular Structure Research, V. 4 (JAI Press, London, 1998).
  18. W. Yang, B. Zhang, N. Ding, W. Ding, L. Wang, M. Yu, and Q. Zhang, Ultrason. Sonochem. 30, 103 (2016).   CrossRef   PubMed