• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 8, p.732-740
http://dx.doi.org/10.15407/ujpe61.08.0732    Paper

Semikina T.V.1, Sheremet G.I.1, Shmyreva L.N.2

1 V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(41, Prosp. Nauky, Kyiv 03028, Ukraine; e-mail: tanyasemikina@gmail.com)
2 National Technical University of Ukraine “Kyiv Polytechnic Institute”
(33, Peremogy Ave., Kyiv 03056, Ukraine)

ZnO Thin Films Obtained by Atomic Layer Deposition as a Material for Photovoltaics

Section: Solid Matter
Original Author's Text: Ukrainian

Abstract: The tasks to be solved while developing solar cells have been reviewed. The analysis of technological methods used for the fabrication of thin transparent conducting ZnO films from the viewpoint of their application in organic and thin-film solar cells demonstrates the advantage of the atomic layer deposition method. It is shown that this method provides a low-temperature (100–200°C) growth of films with a required resistivity of about 10−3 Ω·cm and a transparency of 85–90%. The application of ZnO films in organic photovoltaic structures improves the time stability of their rectification characteristics. The investigation of organic structures with ZnO as a cathode or an anode showed the potential of the usage of ZnO as a cathode. The study of ZnO as a transparent conductive electrode in a CdTe-based inorganic photovoltaic structure shows an increase in the photocurrent and a decrease in the recombination in comparison with
a Mo electrode.

Key words: atomic layer deposition method, transparent conducting ZnO films, organic solar cells, CdS/CdTe solar cells.

References:

  1. T.D. Nielsen, C. Cruickshank, S. Foged, J. Thorsen, and F.C. Krebs, Sol. Ener. Mater. Sol. Cells 94, 1553 (2010).   CrossRef
  2. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and D. Dunlop, Prog. Photovolt.: Res. Appl. 23, 1 (2015).   CrossRef
  3. Thin Film Solar Cells: Fabrication, Characterization, and Application, edited by J. Poortmans and V. Archipov (Wiley, New York, 2007).
  4. G. Luka, M. Godlewski, E. Guziewicz, P. Stahira, V. Cherpak, and D. Volonyuk, Semicond. Sci. Technol. 27, 074006 (2012).   CrossRef
  5. M. Godlewski, Low Temp. Phys. 37, 235 (2010).   CrossRef
  6. A.I. Yevtushenko, G.V. Lashkaryov, V.Y. Lazorenko, V.A. Karpyna, and V.D. Khranovskyi, Fiz. Khim. Tverd. Tila 9, 869 (2008).
  7. N. Huby, S. Ferrari, E. Guziewicz, M. Godlewski, and V. Osinniy, Appl. Phys. Lett. 92, 023502 (2008).   CrossRef
  8. T. Kawahara, T. Ishida, H. Tada, and N.S.Tohge Ito, J. Mater. Sci. Lett. 21, 1423 (2002).   CrossRef
  9. S. Gieraltowska, L. Wachnicki, B.S. Witkowski, M. Godlewski, and E. Guziewicz, Thin Solid Films 520, 4694 (2012).   CrossRef
  10. T.V. Semikina, Uchen. Zapisk. Tavrich. Nats. Univ. Ser. Fiz.22, No. 1, 116 (2009).
  11. TA. Krajewski, G. Luka, L. Wachnicki, AJ. Zakrewski, BS. Witkowski, MI. Lukasiewicz, P. Kruszewski, E. Lusakowska, R. Jakiela, M. Godlewski, and E. Guziewicz, Semicond. Sci. Technol., 26, 085013 (2011).   CrossRef
  12. T. Krajewski, E. Guziewicz, M. Godlewski, L. Wachnicki, I.A. Kowalik, A. Wojcik-Glodowska, M. Lukasiewicz, K. Koplako, V. Osinniy, and M. Guziewicz, Microelectr. J. 40, 293 (2009).   CrossRef
  13. H. Saarenpaa, T. Niemi, A. Tukiainen, H. Lemetyinen, and N. Tkachenko, Sol. Ener. Mater. Sol. Cells 94, 1379 (2010).   CrossRef
  14. T.V. Semikina, S.V. Mamykin, M. Godlewski, G. Luka, R. Pietruszka, K. Kopalko, T.A. Krajewski, S. Gieraitowska, J. Wachnicki, and L.N. Shmyryeva, J. Semicond. Phys. Quant. Electr. Optoelectr. 16, 111 (2013).   CrossRef