• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 7, p.578-582
http://dx.doi.org/10.15407/ujpe61.07.0578    Paper

Herashchenko S.S., Makhlai V.A., Aksenov N.N., Garkusha I.E., Byrka O.V., Kulik N.V., Chebotarev V.V., Staltsov V.V.

Institute of Plasma Physics, NSC KIPT
(1, Akademichna Str., Kharkiv 61108, Ukraine; e-mail: gerashchenko@kipt.kharkov.ua)

Erosion of the Combined Three-Dimensional Tungsten Target Under the Impacts of QSPA Kh-50 Powerful Plasma Streams

Section: Plasmas and Gases
Original Author's Text: English

Abstract: For the first time, the features of the interaction of plasma with materials and the erosion mechanisms have been evaluated for surfaces in a three-dimensional geometry exposed by powerful plasma. Experimental studies of the powerful interaction of plasma with the three-dimensional structures have been carried out on a quasistationary plasma accelerator QSPA Kh-50. The plasma streams with surface heat loads of 0.9 MJ/m2 and plasma pulse duration 0.25 ms, relevant to ITER ELM, have been used in the experiments. The significant erosion occurs under the action of plasma heat loads. Erosion is accompanied by the separation of material particles from the irradiated surfaces. It is found that the number and the velocity of particles emitted from the surface depend on the number of plasma pulses. The most significant factors causing a macroscopic erosion for a three-dimensional tungsten structure have been studied.

Key words: divertor, castellated structure, quasistationary plasma accelerator, plasmasurface interaction.


  1. T. Hirai et al., Phys. Scr. 159, 014006 (2014).  CrossRef
  2. T. Hirai et al., J. of Nucl. Mater. 463, 1248 (2015).  CrossRef
  3. M. Rieth et al., J. of Nucl. Mater. 442, S173 (2013).  CrossRef
  4. V.A. Makhlaj et al., Phys. Scr. 138, 01460 (2009).
  5. B. Bazylev et al., J. of Nucl. Mater. 390–391, 810 (2009).  CrossRef
  6. A. Zhitlukhin et al., J. of Nucl. Mater. 363–365, 301 (2007).  CrossRef
  7. V.I. Tereshin et al., Plasma Phys. and Controlled Fusion 49, No. 5, A231 (2007).  CrossRef
  8. V.A. Makhlaj et al., J. of Nucl. Mater. 463, 210 (2015).  CrossRef
  9. S.S. Herashchenko et al., Problems of Atomic Science and Technology 6, 44 (2014).
  10. I.E. Garkusha et al., Phys. Scr. 138, 014054 (2009).  CrossRef
  11. V.A. Makhlaj et al., Acta Polytech. 53(2), 193 (2013).
  12. I.E. Garkusha et al., Fusion Science and Techn. 65, 186 (2014).  CrossRef
  13. I.E. Garkusha et al., J. of Nucl. Mater. 415, 65 (2011).  CrossRef
  14. I.E. Garkusha et al., J. of Nucl. Mater. 337–339, 707 (2005).  CrossRef
  15. V.A. Makhlaj et al., Phys. Scr. 159, 014024 (2014).  CrossRef