• Українська
  • English

< | Next issue >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 7, p.648-655
http://dx.doi.org/10.15407/ujpe61.07.0648    Paper

Grytsay V.I.

Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14b, Metrolohichna Str., Kyiv 03680, Ukraine; e-mail: vgrytsay@bitp.kiev.ua)

Self-Organization and Chaos in the Metabolism of Hemostasis in a Blood Vessel

Section: Nonlinear Processes
Original Author's Text: English

Abstract: A mathematical model of the metabolic process of formation of the hemostasis in a bloodcarrying vessel is constructed. As distinct from the earlier developed model of the multienzyme prostacyclin-thromboxane system of blood, this model includes, for the first time, the influence of the level of “bad cholesterol”, i.e., low-density lipoproteins (LDLs), on the hemostasis. The conditions, under which the self-organization of the system appears, and the modes of autooscillations and chaos in the metabolic process, which affects the formation of hemostasis and the development of thrombophilia, are found. With the aid of a phase-parametric diagram, the scenario of their appearance is studied. The bifurcations of doubling of a period and the transition to chaotic oscillations as a result of the intermittence are found. The obtained strange attractors are formed due to a mixing funnel. The full spectra of Lyapunov’s exponents, KS-entropies, “predictability horizons”, and Lyapunov’s dimensions of strange attractors are calculated. The reasons for a change in the cyclicity of the given metabolic process, its stability, and the physiological manifestation in the blood-carrying system are discussed. The role of physiologically active substances in a decrease in the level of cholesterol in blood vessels is estimated.

Key words: hemostasis, LDLs, self-organization, strange attractor, phase-parametric diagram, Lyapunov’s exponents, KS-entropy.

References:

  1. Great Medicinal Encyclopedia (Sovetsk. Entsikl., Moscow, 1977), vol. 5, p. 223 (in Russian).
  2. V.V. Verkhusha, V.M. Staroverov, and P.V. Vrzhesh, Biol. Membr. 11, No. 4, 437 (1994).
  3. V.P. Baluda, M.V. Baluda, and I.I. Deyanov, Physiology of the System of Hemostasis (Meditsina, Moscow, 1995) (in Russian).  PubMed
  4. A.S. Shitikova, Thrombocytic Hemostasis (SPbSMU, St.-Petersburg, 2000) (in Russian).
  5. S.D. Varfolomeev, V.P. Gachok, and A.T. Mevkh, BioSystems. 19, 45 (1986).  CrossRef
  6. S.D. Varfolomeev, A.T. Mevkh, and V.P. Gachok, Molek. Biol. 20, No. 4, 957 (1986).
  7. V.P. Gachok, Kinetics of Biochemical Processes (Naukova Dumka, Kiev, 1988) (in Russian).
  8. V.P. Gachok, Strange Attractors in Biosystems (Naukova Dumka, Kiev, 1989) (in Russian).
  9. V.I. Grytsay, Visn. Kyiv. Univ. No. 3, 372–376 (2002).
  10. V.I. Grytsay and V.P. Gachok, Visn. Kyiv. Univ. No. 4, 365 (2002).
  11. V.I. Grytsay and V.P. Gachok, Visn. Kyiv. Univ., Ser. Fiz.- Mat. Nauk. No. 1, 338 (2003).
  12. V.I. Grytsay, Visn. Kyiv. Univ. No. 4, 379 (2003).
  13. P. Libby, Circulation 91, No. 11, 2844 (1995).  CrossRef  PubMed
  14. M.J. Davies, Circulation, 94, No. 8, 2013 (1996).  CrossRef  PubMed
  15. J. Berlineret et al., Thrombosis and Haemostasis 78, No. 1, 195 (1997).
  16. D. Steinberg, J. of Biol. Chem. 272, No. 34, 20963 (1997).  CrossRef  PubMed
  17. V.S. Anishchenko, Complex Oscillations in Simple Systems (Nauka, Moscow, 1990) (in Russian).
  18. S.P. Kuznetsov, Dynamical Chaos (Nauka, Moscow, 2001) (in Russian).
  19. V.P. Gachok and V.I. Grytsay, Dokl. Akad. Nauk SSSR 282, 51 (1985).
  20. V.P. Gachok, V.I. Grytsay, A.Yu. Arinbasarova, A.G. Medentsev, K.A. Koshcheyenko, and V.K. Akimenko, Biotechn. Bioengin. 33, 661 (1989).  CrossRef  PubMed
  21. V.P. Gachok, V.I. Grytsay, A.Yu. Arinbasarova, A.G. Medentsev, K.A. Koshcheyenko, and V.K. Akimenko, Biotechn. Bioengin. 33, 668 (1989).  CrossRef  PubMed
  22. V.I. Grytsay, Dopov. Nats. Akad. Nauk Ukr. No. 2, 175 (2000).
  23. V.I. Grytsay, Dopov. Nats. Akad. Nauk Ukr. No. 3, 201 (2000).
  24. V.I. Grytsay, Dopov. Nats. Akad. Nauk Ukr. No. 11, 112 (2000).
  25. V.I. Grytsay, Ukr. J. Phys. 46, 124 (2001).
  26. V.V. Andreev and V.I. Grytsay, Matem. Modelir. 17, No. 2, 57 (2005).
  27. V.V. Andreev and V.I. Grytsay, Matem. Modelir. 17, No. 6, 3 (2005).
  28. V.I. Grytsay and V.V. Andreev, Matem. Modelir. 18, No. 12, 88 (2006).
  29. V.I. Grytsay, Medium Romanian J. Biophys. 17, No. 1, 55 (2007).
  30. V.I. Grytsay, Biofiz. Visn. No. 2, 92 (2007).
  31. V.I. Grytsay, Biofiz. Visn. No. 2, 25 (2008).
  32. V.I. Grytsay, Ukr. J. Phys. 55, No. 5, 599 (2010).
  33. V.I. Grytsay and I.V. Musatenko, Ukr. Biochem. J. 85, No. 2, 93 (2013).  CrossRef
  34. V.I. Grytsay and I.V. Musatenko, Ukr. J. Phys. 58, No. 7, 677 (2013).  CrossRef
  35. V.I. Grytsay and I.V. Musatenko, Chaotic Modeling and Simulation (CMSIM) No. 4, 539 (2013).
  36. V.I. Grytsay and I.V. Musatenko, Ukr. Biokhim. Zh. 85, No. 5, 191 (2013).
  37. V.I. Grytsay and I.V. Musatenko, Biopolymers and Cell 30, No. 5, 404 (2014).  CrossRef
  38. V. Grytsay and I. Musatenko, Chaotic Modeling and Simulation (CMSIM) 3, 207 (2014).
  39. V. Grytsay, Ukr. J. Phys. 60, No. 6, 564 (2015).  CrossRef
  40. V.I. Grytsay, Ukr. J. Phys. 60, No. 12, 1253 (2015).  CrossRef
  41. Yu.I. Prylutskyy et al., Mater. Sci. & Engineer. C 23, Nos. 1–2, 109 (2003).  CrossRef
  42. A.D. Suprun, Yu.I. Prylutskyy, A.M. Shut, and M.S. Miroshnichenko, Ukr. J. Phys. 48, No. 7, 704 (2003).
  43. A.D. Suprun, A.M. Shut, and Yu.I. Prylutskyy, Ukr. J. Phys. 52, No. 10, 997 (2007).
  44. Ya.B. Pesin, Usp. Mat. Nauk 32, 4, 55 (1977).
  45. A.N. Kolmogorov, DAN SSSR 154, 754 (1959).
  46. J.L. Kaplan and J.A. Yorke, Ann. N. Y. Acad. Sci. 316, 400 (1979).  CrossRef
  47. J.L. Kaplan and J.A. Yorke, Functional Differential Equations of Fixed Points, edited by H.O. Peitgen, H.O. Walther (Springer, Berlin, 1979), p. 204.  CrossRef