• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 6, p.519-522
http://dx.doi.org/10.15407/ujpe61.06.0519    Paper

Ilchenko O.O.1, Pilgun Y.V.2, Reynt A.S.1, Kutsyk A.M.2

1 D.F. Chebotarev State Institute of Gerontology, NAMS of Ukraine
(67, Vyshgorods’ka Str., Kyiv, Ukraine, 04114; e-mail: rada@univ.kiev.ua)
2 Taras Shevchenko National University of Kyiv
(64, Volodymyrs’ka Str., Kyiv, Ukraine, 01033)

NNLS and MCR-ALS Decomposition of Raman and FTIR Spectra of Multicomponent Liquid Solutions

Section: Soft Matter
Original Author's Text: English

Abstract: The possibilities of the decomposition by non-negative least squares (NNLS) and Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) methods of determination of spectra and concentrations of species in multicomponent (up to 8) liquid solutions by analyzing FTIR ATR and Raman spectra are discussed. It is shown that the NNLS decomposition of Raman spectra provides better results than the decomposition of the same mixture measured with the FTIR ATR method. This fact is connected with narrower width and smaller overlap of vibrational peaks obtained with the use of Raman spectroscopy comparing to IR spectroscopy for molecular liquids. It is shown that using the known spectra can increase the total number of species, for which a quantitative information can be successfully obtained. The unknown concentration profiles of an N = 8 - component liquid mixture can be found correctly if the N−1 spectra of pure components are used as spectral constrains during the MCR-ALS analysis.

Key words: Raman spectra, FTIR ATR spectra, multicomponent mixture, decomposition,
multivariate curve resolution.


  1. M.J. Adams, Chemometrics in Analytical Spectroscopy (RSC, Cambridge, 2004).
  2. J.-H. Jiang and Yu. Ozaki, Appl. Spec. Rev. 37, 321 (2002).   CrossRef
  3. P.-Y. Sacre, C. De Bleye, P.-F. Chavez, L. Netchacovitch, Ph. Hubert, and E. Ziemons, J. Pharm. Biomed. Anal. 101, 123 (2014).   CrossRef   PubMed
  4. B. Vajna, G. Patyi, Z. Nagy, A. Bodis, A. Farkasa and G. Marosi, J. Raman Spec. 42, 1977 (2011).
  5. . L. Duponchel, W. Elmi-Rayaleh, C. Ruckebusch, and J.P. Huvenne, J. Chem. Inf. Comput. Sci. 43, 2057 (2003).   CrossRef   PubMed
  6. C. Gendrin, Y. Roggo, and C. Collet, J. Pharm. Biomed. Anal. 48, 533 (2008).   CrossRef   PubMed
  7. R. Tauler and A. de Juan, Anal. Chim. Acta 500, 195 (2003).   CrossRef
  8. R. Manne, Chem. Intell. Lab. Sys. 27, 89 (1995).   CrossRef
  9. H. Abdollahi and R. Tauler, Chem. Intell. Lab. Sys. 108, 100 (2010).   CrossRef
  10. P. Gemperline, Anal. Chem. 71, 5398 (1999).   CrossRef   PubMed
  11. R. Tauler, J. Chemometrics 15, 627 (2001).
  12. R. Tauler, A. Smilde, and B. Kowalski, J. Chemometrics 9, 31 (1995).
  13. C.L. Lawson and R.J. Hanson, Solving Least Squares Problems (Prentice-Hall, Englewood Cliffs, NJ, 1995).   CrossRef
  14. J. Jaumot, A. de Juan, and R. Tauler, Chem. Intell. Lab. Sys. 140, 1 (2015).   CrossRef