• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 6, p.502-507
http://dx.doi.org/10.15407/ujpe61.06.0502    Paper

Gridyakina A.V.

National Aviation University
(1, Komarov Prosp., Kyiv 03058, Ukraine; e-mail: morhin@ukr.net)

Electric Properties of Ionic Thermotropic Liquid Crystals

Section: Soft Matter
Original Author's Text: English

Abstract: This work presents the results of studies of the electric properties of samples of oriented ionic thermotropic liquid crystals (ITLC) of cobalt decanoate, lead decanoate, and their binary mixture. It is found that all studied samples in the temperature range, where a liquid crystal exists, are weak electrolytes. All investigated compounds are characterized by an anisotropy of bulk conductivity caused by the ordering of molecules. The values of electric conductivity, activation energy, charge mobility, and concentration are estimated.

Key words: ionic thermotropic liquid crystals, cobalt alkanoate, lead alcanoate, binary mixture, conductivity, anisotropy of conductivity.


  1. . T.V. Timofeeva, E.E. Boda, A.P. Polischuk, M.Yu. Antipin, E.V. Matukhina, I.M. Petrova, N.N. Makarova, and Yu.T. Struchkov, Mol. Cryst. Liq. Cryst. 248, 125 (1994).
  2. A.P. Polishchuk, N.N. Makarova, and T.V. Astapova, Kristallogr. 47, 863 (2002).
  3. A.P. Polishchuk and T.V. Timofeeva, Rus. Chem. Rev. 62, 291 (1993).
  4. L.M. Babkov, N.A. Golovina, A.V. Kosov, A.P. Polishchuk, and G.A. Puchkovskaya, J. Mol. Struc. 218, 207 (1990).
  5. A.R. Ubbelohde, H.J. Michels, and J.J. Duruz, Nature, 228, 50 (1970).
      CrossRef   PubMed
  6. I.J. Duruz, H.I. Michels, and A.R. Ubbelohde, Proc. Roy. Soc. London A 322 , 281 (1971).
  7. D. Zhulai, D. Fedorenko, A. Kovalchuk, S. Bugaychuk, G.V. Klimusheva, and T.A. Mirnaya, Nanoscale Res. Lett. 10, 66 (2015).
  8. A.B. Bordyuh, Yu.A. Garbovskiy, S.A. Bugaychuk, G.V. Klimusheva, T.A. Mirnaya, G.G. Yaremchuk, and A.P. Polishchuk, Opt. Mat. 31, 1109 (2009).
  9. A.B. Bordyuh, Yu.A. Garbovskiy, S.A. Bugaychuk, G.V. Klimusheva, T.A. Mirnaya, G.G. Yaremchuk, and A.P. Polishchuk, Ukr. J. Phys. 53, 1167 (2008).
  10. G. Klimusheva, Yu. Garbovskiy, S. Bugaychuk, A. Bordyuh, A. Grydyakina, A. Polishchuk, T. Mirnaya, G. Yaremchuk, and A. Ishchenko, Proc. SPIE 6728, 67283F1 (2007).
  11. Xu Fei, Shohei Matsubara, Kazuhiko Matsumoto, and Rika Hagiwara, J. Fluor. Chem. 135, 344 (2012).
  12. Xin Lan, Lu Bai, Xin Li, Shuang Ma, Xiaozhi He, and Fanbao Meng, J. Mol. Struc. 1075, 515 (2014).
  13. T.A. Mirnaya, Ukr. Chem. J. 63, 3 (1997).
  14. T.A. Mirnaya et al., in: Green Industrial Applications of Ionic Liquids, edited by R.D. Rogers, K.R. Sneddon, S. Volkov (Dordrecht, Kluwer, 2003), p. 439.
  15. А.R. Ubbelohde, The Molten State of Matter (Wiley, New York, 1978).
  16. J. Hanna, A. Ohno, and H. Iino, Thin Solid Films 554, 58 (2014).
  17. A.V. Gridyakina, G.V. Klimusheva, A.P. Polishchuk, A.V. Koval'chuk, A.S. Tolochko, T.A. Mirnaya, and L.S. Sudovtsova, Rus. J. Phys. Chem. 79, 871 (2005).
  18. Yu.A. Garbovskiy, A.V. Gridyakina, G.V. Klimusheva, A.S. Tolochko, I.I. Tokmenko, and T.A. Mirnaya, Liq. Crys. 37, 1411 (2010).
  19. T. Uchida and H. Seki, Surface Alignment of Liquid Crystals (World Scientific, Singapore, 1992).
  20. S. Kumar, Liquid Crystals: Experimental Studies of Physical Properties and Phase Transitions (Cambridge Univ. Press, Cambridge, 2000).
  21. A.J. Twarowsk and, A.C. Albrecht, J. Chem. Phys. 70, 2255 (1979).
  22. A.V. Koval'chuk, J. Phys: Cond. Matt. 13, 10333 (2001).
  23. N.I. Gryshchenko, M.V. Kuryk, and A.V. Rogoza, Ukr. Phys. J. 30, 1497 (1985).
  24. S.O. Adeosun, J. Chem. Faraday Trans. I. 75, 953 (1979).