• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 6, p.495-501
http://dx.doi.org/10.15407/ujpe61.06.0495    Paper

Brodyn M.S.1, Mulenko S.A.2, Rudenko V.I.1, Liakhovetskyi V.R.1, Volovyk M.V.1, Stefan N.3

1 Institute of Physics, Nat. Acad. of Sci. of Ukraine
(46, Prosp. Nauky, Kyiv 03680, Ukraine)
2 G.V. Kurdyumov Institute for Metal Physics, Nat. Acad. of Sci. of Ukraine
(36, Vernadskyi Ave., Kyiv 03142, Ukraine)
3 National Institute for Laser, Plasma and Radiation Physics
(PO Box MG-54, Magurele RO-77125, Romania)

Cubic Optical Nonlinearity of Thin Fe2O3 and Cr2O3 Films Synthesized by Pulsed Laser Deposition

Section: Optics, Lasers, and Quantum Electronics
Original Author's Text: Ukrainian

Abstract: The extinction spectra and the parameters of cubic optical nonlinearity in thin Fe2O3 and Cr2O3 films deposited on glass substrates with the use of the laser sputtering method have been measured. The cubic optical nonlinearity is studied, by using femtosecond laser radiation with the wavelength λ = 800 nm and the pulse duration τ = 180 fs. The energy gap width evaluated from the extinction spectra is found to equal Eg 2.4 eV and 2.2 eV for Fe2O3 films synthesized on the substrates at temperatures of 293 K and 800 K, respectively, and Eg 3 eV for Cr2O3 films deposited on the substrate heated up to 800 K. Rather high values are obtained for the coefficients of refractive nonlinearity: Re(3) ∼ 10−6 esu for Fe2O3 films and Re(3) ∼ 10-7 esu for Cr2O3 ones. The determined values of Im(3) amounted to about 10-6÷10-7 esu for Fe2O3 films and about 10-8esu for Cr2O3 ones. Probable mechanisms of refractive nonlinearity have been proposed.

Key words: cubic optical nonlinearity, thin Fe2O3 and Cr2O3 films, laser sputtering method, femtosecond laser radiation.

References:

  1. H.S. Zhou, A. Mito, D. Kundu, and I. Honma, J. Sol-Gel Sci. Techn. 19, 539 (2000).
  2. T. Hashimoto, T. Yoko, and S. Sakka, J. Ceram. Soc. Jpn. 101, 64 (1993).   CrossRef
  3. T. Hashimoto, T. Yamada, and T. Yoko, J. Appl. Phys. 80, 3184 (1996).   CrossRef
  4. B. Yu, C. Zhu, and F. Gan, Physica E 8, 360 (2000).   CrossRef
  5. G. Chatzikyriakos, K. Iliopoulos, A. Bakandritsos, and S. Couris, Chem. Phys. Lett. 493, 314 (2010).   CrossRef
  6. S.A. Mulenko, M.S. Brodyn, and V.Ya. Gayvoronsky, Proc. SPIE 6161, 616107 (2006).   CrossRef
  7. H. Jiang, R.I. Gomez-Abal, P. Rinke, and M. Scheffler, Phys. Rev. B 82, 045108 (2009).   CrossRef
  8. J.A. Crawford and R.W. Vest, J. Appl. Phys. 35, 2413 (1964).   CrossRef
  9. S. Sahoo and C. Binek, Phil. Mag. Lett. 87, 3 (2007).   CrossRef
  10. Chun-Shen Cheng, H. Gomi, and H. Sakat, Phys. Status Solidi A 155, 417 (1996).   CrossRef
  11. Z.T. Khodair, G.A. Kazem, and A.A. Habeeb, Iraqi J. Phys. 10, 17 (2012).
  12. V.N. Muthukumar, R. Valent’ı, and C. Gros, Phys. Rev. B 54, 433 (1996).   CrossRef
  13. R.V. Pisarev, M. Fiebig, and D. Fr¨ohlich, Ferroelectrics 204, 1 (1997).   CrossRef
  14. . L. Blaney, Lehigh Rev. 15, 5 (2007).
  15. R. Shannon, R. Shannon, O. Medenbach, and R. Fischer, J. Phys. Chem. Ref. Data 31, 4 (2002).   CrossRef
  16. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, and E.W. Van Stryland, IEEE J. Quantum Elect. 26, 760 (1990).   CrossRef
  17. H.M. Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, New York, 1985).
  18. A.A. Borshch, M.S. Brodin, and V.I. Volkov, Refractive Nonlinearity of Wide-Band Semiconductors and Applications (Harwood Academic Publ., Chur, 1990).   PubMed