• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 6, p.489-494
http://dx.doi.org/10.15407/ujpe61.06.0489    Paper

Stanovyi O.1, Kutovyy S.1, Morozov Yu.1, Naumenko A.1, Dmitruk I.1, Borodyanska A.2

1 Taras Shevchenko National University of Kyiv
(64/13, Volodymyrs’ka, Kyiv 01601, Ukraine)
2 Frantsevich Institute for Problems of Materials Science, Nat. Acad. of Sci. of Ukraine
(3, Krzhizhanovs’kyi Str., Kyiv 03680, Ukraine)

Low-Temperature Thermoluminescence Studies of the Nanocrystalline Yttria-Stabilized Zirconia

Section: Optics, Lasers, and Quantum Electronics
Original Author's Text: English

Abstract: The spectra of thermoluminescence (TL) of nano-sized powders ZrO2 stabilized by Y2O3 (YSZ) in the temperature range of 80–350 K have been studied for the first time. For comparison, the TL spectra of pure ZrO2 are obtained. It is found that the TL in undoped ZrO2 is mainly caused by intrinsic defects, whereas, in doped zirconia, it is caused by dopants. Using the fractional curve glowing method, the values of activation energies of traps in YSZ have been determined. The model of TL in YSZ has been proposed.

Key words: thermoluminescence, zirconia, method of fractional curves, activation energies of traps.


  1. R.C. Buchanan and S. Pope, J. Electrochem. Soc. 130, 962 (1983).   CrossRef
  2. M. Kilo, C. Argirusis, G. Borchardt, and R.A. Jackson, Phys. Chem. Chem. Phys. 5, 2219 (2003).   CrossRef
  3. M. Biswas, P.K. Ojha, E.M. Jayasingh, and C.D. Prasad, Nanomater. Nanotechn. 1, 55 (2011).
  4. G. Pang, S. Chen, Y. Zhu et al., J. Phys. Chem. B 105, 4647 (2001).   CrossRef
  5. J. Cheng, R. Pornprasertsuk, H. Huang et al., Proc. Mater. Research Soc., Fall Mtg 801, BB6.10 (2003).
  6. J.-M. Costantini, F. Beuneu, K. Schwartz, and C. Trautmann, J. Phys.: Condens. Matter 22, 315402 (2010).   CrossRef   PubMed
  7. V.M. Orera, R.I. Merino, Y. Chen et al., Phys. Rev. B 42, 9782 (1990).   CrossRef
  8. V.M. Orera, R.I. Merino, Y. Chen et al., Radiat. Eff. Defects in Solids 119–121, 907 (1991).   CrossRef
  9. C.B. Azzoni and A. Peleari, Phys. Rev. B 53, 5 (1996).   CrossRef
  10. J.-M. Costantini, F. Beuneu, M. Fasoli et al., J. Phys.: Condens. Matter 23, 115901 (2011).   CrossRef   PubMed
  11. R. Chen, Thermolum. Dosim. 1, 49 (1984).
  12. C. Viazzi, J.-P. Bonino, F. Ansart, and A. Barnab´e, J. of Alloys and Compounds 452, 377–383 (2008).   CrossRef
  13. G.C. Taylor and E. Lilley, J. Phys. D: Appl. Phys. 11, 567 (1978).   CrossRef
  14. S.W.S. McKeever, Thermoluminescence of Solids (Cambridge Univ. Press, Cambridge, 1988).
  15. K.A. Shoaib, F.H. Hashmi, M. Ali et al., Phys. Stat. Sol. A 40, 605 (1977).   CrossRef
  16. J.T. Randall and M.H.F. Wilkins, Proc. Roy. Soc. Lond. 184, 366 (1945).
  17. J.T. Randall and M.H.F. Wilkins, Proc. Roy. Soc. Lond. 184, 390 (1945).   CrossRef
  18. C. Furetta, Handbook of Thermoluminescence (World Sci., Singapore, 2003).
  19. A.F. Gumenyuk and S.Yu. Kutovyi, Ukr. Fiz. Zh. 45, 1093 (2000).
  20. A.F. Gumenjuk, S.Yu. Kutovyi, and M.O. Grebenovish, Funct. Mater. 9, 314 (2002).
  21. . A.F. Gumenjuk and S.Yu. Kutovyi, Centr. Europ. J. Phys. 1, 307 (2003).
  22. D. Munoz Ramo, P.V. Sushko, J.L. Gavartin, and A.L. Shluger, Phys. Rev. B 78, 235432 (2008).   CrossRef
  23. B. Kr’alik, E.K. Chang, and S.G. Louie, Phys. Rev. B 57, 7027 (1998).   CrossRef