• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 6, p.482-488
http://dx.doi.org/10.15407/ujpe61.06.0482    Paper

Kernazhitsky L.1, Shymanovska V.1, Gavrilko T.1, Naumov V.1, Fedorenko L.2, Kshnyakin V.3, Burtsev A.4, Baran J.5

1 Institute of Physics, Nat. Acad. of Sci. of Ukraine
(46, Prosp. Nauky, Kyiv 03028, Ukraine; e-mail: kern@iop.kiev.ua)
2 V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(45, Prosp. Nauky, Kyiv 03028, Ukraine)
3 Sumy State University
(2, Rymsky-Korsakov Str., Sumy 40007, Ukraine)
4 G.V. Kurdyumov Institute for Metal Physics, Nat. Acad. of Sci. of Ukraine
(36, Academician Vernadsky Blvd., Kyiv 03680, Ukraine)
5 Institute of Low Temperature and Structure Research, Polish Academy of Sciences
(2, Okolna Str., 50-950 Wroclaw, Poland)

Effect of Cr-Doping on Luminescence of Nanocrystalline Anatase TiO2 Powders

Section: Optics, Lasers, and Quantum Electronics
Original Author's Text: English

Abstract: We have studied the photoluminescence (PL) of titanium dioxide nanocrystalline powders (TiO2) synthesized by the thermal hydrolysis in the form of anatase (A), whose surface has been modified by the adsorption of chromium ions (Cr3+). The samples are characterized by X-ray diffraction, X-ray fluorescence, and Raman spectroscopy. PL spectra were excited by a nitrogen UV laser. The Cr3+ ion doping in А/TiO2 leads to short-wave and long-wave shifts of the PL peaks due to the Burstein–Moss effect and due to the contribution of radiation “tails” of the electron density of states, respectively. The PL intensity of Cr3+ -doped A/TiO2 at low concentration of Cr3+ (up to 0.5 at.%) increases in comparison with the undoped A/TiO2 due to the formation of additional centers of radiative recombination of carriers. With increasing the concentration of Cr3+ (~1.0 at.%), the A/TiO2 PL intensity decreases due to the concentration quenching.

Key words: titanium dioxide, anatase, Cr-doping, photoluminescence.

References:

  1. A. Fujishima, X. Zhang, and D.A. Tryk, Surf. Sci. Rep. 63, 515 (2008).   CrossRef
  2. Arafat C. Xu, J. Wu, U.V. Desai, and D. Cao, Nano Lett. 12, 2420 (2012).
  3. M.I. Baraton, Recent Pat. Nanotechnol. 6, 10 (2012).   CrossRef   PubMed
  4. M.M. Arafat, B. Dinan, S.A. Akbar, and A.S.M.A. Haseeb, Sensors 12, 7207 (2012).   CrossRef   PubMed   PubMedC
  5. H.Yamashita,M.Harada, J.Misaka,M.Takeuchi,K. Ikeue, and M. Anpo, J. Photochem. Photobiol. A 148, 257 (2002).   CrossRef
  6. W.Y. Choi, A. Termin, and M.R. Hoffmann, Angew. Chem. Int. Ed. 33, 1091 (1994).   CrossRef
  7. B. Choudhury and A. Choudhury, Mater. Chem. Phys. 132, 1112 (2012).   CrossRef
  8. M. Anpo and M. Takeuchi, J. Catal. 216, 505 (2003).   CrossRef
  9. J. Zhu, Z. Deng, F. Chen, J. Zhang, H. Chen, M. Anpo, J. Huang, and L. Zhang, Appl. Catal. B-Environ. 62, 329 (2006).   CrossRef
  10. V.V. Shymanovskaya, A.A. Dvernyakova, and V.V. Strelko, Izv. Akad. Nauk. SSSR, Neorg. Mater. 24, 1188 (1988).
  11. L. Kernazhitsky, V. Shymanovska, T. Gavrilko, V. Naumov, V. Kshnyakin, and T. Khalyavka, J. Solid State Chem. 198, 511 (2013).   CrossRef
  12. S.P.S. Porto, P.A. Fleury, and T.C. Damen, Phys. Rev. 154, 522 (1967).   CrossRef
  13. J.C. Parker and R.W. Siegel, Appl. Phys. Lett. 57, 943 (1990).   CrossRef
  14. W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, and Q. Chen, J. of Phys. D: Appl. Phys. 33, 912 (2000)   CrossRef
  15. L. Kernazhitsky, V. Shymanovska, T. Gavrilko, V. Naumov, V. Kshnyakin, and J. Baran, J. Lumin. 146, 199 (2014).   CrossRef
  16. N. Daude, C. Gout, and C. Jouanin, Phys. Rev. B 15, 3229 (1977).   CrossRef
  17. H. Tang, H. Berger, P.E. Schmid, and F. Levy, Solid State Comm. 92, 267 (1994).   CrossRef
  18. U. Hormann, U. Kaiser, M. Albrecht, J. Geserick, and N. Husing, J. Phys. Conf. Ser. 209, 012039 (2010).   CrossRef
  19. J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, and S. Jiazhong, Solar Energy Mater. and Solar Cells 90, 1773 (2006).   CrossRef
  20. H.C. Casey, jr., and F. Stern, J. Appl. Phys. 47, 631 (1976).   CrossRef
  21. E. Burstein, Phys. Rev. 83, 632 (1954).   CrossRef
  22. R. Chen, J.L. Lawless, and V. Pagonis, Radiation Measur. 46, 1380 (2011).   CrossRef
  23. N. Serpone, J. Phys. Chem. B 110, 24287 (2006).   CrossRef   PubMed
  24. X.B. Wang, C. Song, K.W. Geng, F. Zeng, and F. Pan, Appl. Surf. Sci. 253, 6905 (2007).   CrossRef